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Abstract - (i)-a-Cyclopiazonic acid (2) was synthesized from 

1-methoxycarbonyl-4-(3-0x0-1-buty1)indol (1) by way of 17, 18, 

and 19, using a reaction of MeLi with a pyrroline derivative 33 

in the presence of BF .Et20. 3 

Some time ago, we reported a novel reaction for the preparation of 4-alkylindoles 

from 1-metho~ycarbonylpyrrole.~ 1-Methoxycarbonyl-4- (3-0x0-1-butyl) indale ( 1 )  

obtained by this procedure has served as a good starting material in synthesizing 

a number of ergot  alkaloid^.^ Here we describe a further utilization of 1 for a 

total synthesis in the racemic form of a-cyclopiazonic acid ( 2 1 ,  a mycotoxin 

isolated first from penicillium cyclopium ~ e s t l i n g , ~ ' ~  accompanied by the related 

alkaloids, cyclopiazonic acid imine (3) and 0-cyclopiazonic acid (bissecodehydro- 

cyclopiazonic acid) (4) .5 This study confirms the proposed structures of 2 and 

3 , 6  since the latter has been derived from 2 by treatment with aqueous ammonia. 
5 

I 
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3-Forrnylindole derivative 7, readily prepared from 1 by way of 5 and 6 using 

conventional reactionsteps depicted in Chart 1, was tosylated to afford 8 in 

order to make the formyl function sufficiently reactive to a carbanion generated 

7 8 from ethyl isocyanoacetate and I-BuOK in THF. An oxazolidine derivative 9 was a 

reaction product at first but further addition of - t-BuOK cleaved the oxazolidine 

ring to form the desired compounds 10 and 1 1  in 61% and 5% yields, respectively, 
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a: HOCH2CH20H, p-TsOH, C6H6, reflux, 1 h. b: 2% KOH in MeOH-DME-H20 (3:l:l). 1.t.. 

1.5 h. c: P O C ~  -DMF in Et20-DMF, O°C + r.t., 30 min. d: p-~sC1, Et3N, CH2C12, 
3 - 

r.t., Ih. e :  CNCH2COOEt, t-BuOK, THF, -81 - -20°C, 1 h;and then 5-BuOK, -20°C, 30 

min. f: 50% NaH, DMF, O'C, 20 min: and then ClCH20Me in THF, -83 + -20°C, 30 min. 

g :  acetone, p-TsOH, r.t., 1 4  h. h: DBU, C6H6, reflux, 6 h from 15,  1 6  or 21, 3.5 

h from 1 7 .  i: (i) Ph3P=CH2, THF, -80°C. 20 min; (ii) 50% Nan, DMF-THF (2:3), 0°C - r.t., 1 h. j: 1 8 HC1 in DMSO-EtOH-H 0 (1:1:1), reflux, 2 h. j ' :  1 N HC1 in 
2 

DMSO-EtOH-H20 (2:2:1), reflux, 5 h. k: ClCOOMe, Et3N, CH2C12, -20'C + r.t., 1 h 15 

min. 2 :  C1COOCH2Ph, Et3N, CH2C12, -20°C + r.t. rn: PhSeC1, Si02, CH2C12, -82'C. 

15 min and then r.t., 1.5 h. n: Raney Ni (W-21, EtOH, reflux, 4 h. 

Chart 1 

accompanied by the formation of 1 2  in 15% yield. The geometrical stereostructures 

of 1 0  and 1 1  remain undetermined. The formamide function in 1 0  and 1 1  was pro- 

tected by the methoxymethyl group to give 1 3  and 1 4 ,  and the ethylene ketal group 

was removed to afford 1 5  and 1 6 ,  which were ready for the cyclization induced by 

the intramolecular Michael reaction. This was achieved by heating either 1 5  or 16 

with DBU in refluxing benzene, and tricyclic compounds 1 7  and 18 were obtained in 

50% and 28% or 52% and 27% yields, accompanied by the formation of the third pro- 

duct 19 with inseparable contaminants in a small amount. The respective yields of 

the three products reflected the ratio of the equilibrium during the Michael addi- 

tion reaction and this was verified by the observation that the same treatment of 

1 7  as above produced 1 8  and 1 9  in 27% and 6% yields with the recovery of 17 in 52% 

yield. 

Stereochemistry of the tricyclic compounds 1 7  and 18 is determined as follows. 

The reaction of Ph3P=CH2 with 1 7  or 1 8 ,  followed by treatment with NaH, furnished a 

mixture of 2 0  and 21 with a partial isornerization of the COOEt group in either 

case, 2 0  being thermodynamically more favored. This fact was supported by the 

predominant formation of 20, when 2 1  was refluxed with DBU. Acid hydrolysis of the 

Nb-protecting groups of 20 afforded the expected primary amine 2 2  in 58% yield, 

together with a by-product 2 3  in 23% yield. The amino group in 22 was protected 

again by the benzyloxycarbonyl group to give 2 4  and this was treated with PhSeCl in 

the presence of sio2' to produce tetracyclic compound 2 5  having the phenylselenyl 

function, which was removed reductively with Raney Ni in refluxing EtOH to yield 

26 and 2 7 .  The 'H NMR spectrumlo of 26 exhibits a big coupling value (p12.5 Hz) 

between H-4 and H-8, suggesting that 2 6  possesses an undesired trans stereochemi- 

stry of the C/D ring juncture. 

The structure of the by-product obtained at the acid hydrolysis of 2 0  is considered 



to be 2 3  according to the precedent reported by Goto &. ,11 as a cyclization 

product of an -N=CH2 moiety of an intermediate to the C-2 position of the N-tosyl- 

indole function, which seems to be still nucleophilic probably due to the styrene 

reactivity. By-product 2 3  was converted to a methaaycarbonyl derivative 28,  whose 

'H NMR spectrumlZ revealed the stereochemistry at the C-5, C-6, and C-7 positions 

as shown by analysis of the coupling pattern of H-5 (d, J = 6 Hz) and H-6 ldddd, 

J = 12, 6, 3, 3 HZ), the latter being involved in the long-range coupling with - 
1 

each of the methylene protons at C-3 position. This fact together with the H NMR 

spectrum of 2 6  confirms the stereostructures of 2 0  and its COOEt epimer 2 1 ,  and 

therefore, strongly suggests those of 1 7  and 1 8 .  The similar acid treatment of 

21 afforded another set of compounds 2 9  and 30,  which were separated and charac- 

terized after converting 3 0  into 3 1 .  This indicates that the stereocenter of the 

amino acid ester part remained unaffected by the acid treatment. 

The acid hydrolysis of the ketone derivatives 17,  1 8 ,  and 1 9  provides key com- 

pounds for the total synthesis (Chart 2): e., a ketimine derivative 32 was a 

product from 17, whereas another ketimine 3 3  was the sole product from either 1 8  

or 1 9 .  The structures of 3 2  and 33 are supported by the following facts, keeping 

in mind the above argument about the stable nature of the COOEt group with an acid. 

ii) The relationship between the C and D rings of 3 2  is demonstrated to be cis by 

its 'H NMR spectrum,13 in which a relatively small coupling value 1Jqr8 = 7.5 Hz) 

compared to that of 2 6  was deduced from the proton signal at the C-4 position. 

(ii) Compound 3 3  is an epimer of 32 with respect to the configuration of the COOEt 

group, because 3 2  was isomerized in part to 3 3  by heating with DBU. The predomi- 

nant recovery of 32 implies the thermodynamically stable character of its COOEt 

function. (iii) A high field shift of the methyl proton signal (0.78 ppml of the 

COOEt group was observed in the 'H NMR spectrum14 of 3 3  and this can be explained 

Only by the ring current effect of the indole ring, offering strong evidence for 

the structure 3 3 ,  where the methyl group is closely located above the aromatic 

ring. Therefore, in summary, epimerization at the C-8 position has taken place 

during the acid treatment of 1 7  and 1 8  to yield C/D cis ketimines 32 and 3 3  

corresponding to the stereochemistry of u-cyclopiazonic acid 12) and iso-a-cyclo- 

piazonic acid ( 3 8 )  . 3  At the same time, the structure of 1 9  is established as 

shown. 

Introduction of the methyl group into the ketimine function requires a quite novel 
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a: 1 N - HC1 in EtOH-H20 (4:1), reflux, 3 h from 17, 4 h from 18, 6 h from 19. b :  

DBU, C6H6, reflux, 3 h. c: (i) BF3.Et20, THF, ODC, 5 mi"; (ii) MeLi in Et20, -80 - 

-6SDC, 45 min. d: fi) 10% KOH in EtOH-H20 (3:1), reflux, 3 h; fii) p-TsOEt, - E t O H ,  

reflux, 14 h. e :  (i) diketene, CH2C12, reflux, 1 h for 38, 2 h for 2; (ii) &-BuOK, 

THF-E~OH (5:1), O°C I r.t., 19.5 h for 38, 15 h for 2. f: Et3N, C6H6, reflux, 

15 h. 

Chart 2 

method, since the addition to the ketimine system of an alkylmetallic reagent is 

generally unattainable, especially with the neighboring hydrogen atoms such as C - 7 

Me and C8-H.15 in order to overcome this difficulty, a special device consisting 

of an initial formation of a complex with BF .Et20, followed by the addition of 3 

MeLi was applied to 33,16 utilizing the knowledge about a possible steric hind- 

rance of the COOEt group, which was suggested by the above-mentioned NMR phenome- 

non. Requisite compounds 34 and 35 were obtained in 40% and 4% yields, respec- 

tively, accompanied by the formation of 32 in 9% yield. The tosyl group was 

removed at this stage by warming 34 and 35 with caustic alkali. Reesterifying the 

resulting amino acids with ethyl - p-toluenesulfonate17 afforded a mixture of 36 and 

37 from 34 but only 37 from 35. Compound 36 was treated successively with di- 

ketene18 in CH2C12 and - t-BuOK in a mixture of THF and EtOH to produce (+)-iso-a- 

cyclopiazonic acid (38), which was identical with the authentic sample (UV, IR, MS, 

and 'H NMR) prepared from natural a-cyclopiazonic acid according to the litera- 

ture.3 Treating 37 the same as above completed the synthesis of (A)-a-cyclo- 

1 
piazonic acid (2), identified with the natural specimen (TLC, UV, IR, MS, and H 



NMR), confirming its proposed structure. Treatment of ( + ) - 3 8  with Et3N in reflux- 

ing benzene afforded a 5:2 mixture of (11-2 and (+I-38, whose recrystallization 

from MeOH yielded a further crop of (1)-2 in 40% yield. 19 
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