
1,4-BENZODITHIIN 1,1,4,4-TETRAOXIDE AS DIENOPHILE

Juzo Nakayama,\* Yoichi Nakamura, and Masamatsu Hoshino Department of Chemistry, Faculty of Science, Saitama University, Urawa, Saitama 338, Japan

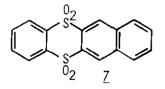
<u>Abstract</u> — 1,4-Benzodithiin 1,1,4,4-tetraoxide undergoes the Diels-Alder reaction with a series of dienes under mild conditions to provide the corresponding adducts in excellent yields. The adduct with anthracene is desulfonated to afford dibenzobarrelene, thus showing that the title compound functions as an acetylene equivalent.

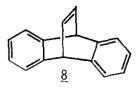
A number of ethylene and acetylene equivalents have recently been developed to circumvent the drawbacks of the low reactivity of unadorned ethylene and acetylene as dienophilic reagents. Among them, of particular interest and synthetically important are the olefinic dienophiles that are activated by sulfur functionalities such as sulfoxides and sulfones. Paquette et al. developed acetylene equivalents  $(1)^1$  and  $(2)^2$  and an ethylene equivalent (3),  $^{3,4}$  while De Lucchi et al. reported that the doubly sulfonyl-activated  $(4)^{5,7}$  and  $(5)^{6,7}$  which have higher dienophilic reactivity serve as acetylene equivalents. Herein we report that the cyclic disulfone, 1,4-benzodithiin 1,1,4,4-tetraoxide (6),  $^8$  is a much stronger dienophile than any other reagents described above and functions as an acetylene equivalent.<sup>9,10</sup>





The known sulfone  $6^8$  was most conveniently prepared from easily accessible 2-isopentyloxy-1,3-benzodithiole<sup>11</sup> as the starting material (Scheme 1). The cyclic sulfone 6 smoothly undergoes the Diels-Alder reaction with a series of dienes under mild conditions to provide the corresponding adducts nearly quantitatively. Tetraphenylcyclopentadienone exceptionally resists reaction with 6 probably because of the electron-deficient nature of the both reactants. The procedure of the reaction is very simple; a solution of 6 and a diene in an appropriate solvent was allowed to stand at ambient temperature or heated and the adducts were easily isolated by column chromatography on silica gel. The results are summarized in Table 1.


The sulfone 6 is a much stronger dienophile than compounds 1-5. Heating 6 and anthracene (1.1 equiv) in refluxing toluene for 4 h affords the Diels-Alder adduct in 93% yield (entry 1). The Diels-Alder reaction of anthracene with compounds  $1\cdot5$  requires more forced conditions; the conditions employed for the reaction of anthracene with 1, 2 (trans), 3, 4, and 5 are 130 °C for 120 h,<sup>1</sup> 160 °C for 1 week,<sup>2,4</sup> 155 °C for 100 h,<sup>3,4</sup> 170 °C for 24 h,<sup>7</sup> and 160 °C for 18 h,<sup>7</sup> respectively. Similar comparison with other dienes leads to the same conclusion. An equimolar mixture of anthracene, 6, and maleic anhydride in toluene was refluxed for 0.5 h. In that time, about 60% of anthracene was consumed and the adducts of anthracene with 6 and maleic anhydride were formed in nearly equal amounts, thus suggesting that the dienophilic reactivity of 6 toward anthracene is nearly equal to that of maleic anhydride.


When trans-1, 2-dichloro-1, 2-dihydrobenzocyclobutene was heated with 6 in refluxing o-dichlorobenzene, under the conditions of which the former undergoes the ring-opening reaction leading to the o-quinodimethane form, the reaction afforded

| with a Series of Dienes |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - conditions                                             |                                       |
|-------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|
| entry                   | diene    | adduct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (solvent, yiel<br>temperature, (%)<br>time)              | d mp of adduct<br>(°C)                |
| l                       | a)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | toluene<br>reflux 93<br>4h                               | 367-369 (dec.)                        |
| 2                       | b)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CH <sub>2</sub> C1CH <sub>2</sub> C1<br>50 °C 98<br>10 h | 3 158-159                             |
| 3                       | b)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CH <sub>2</sub> C1 <sub>2</sub><br>r.t. 99<br>25 h       | 183.5-184.5                           |
| 4                       | b)       | $S_{\delta_2}^{2} \xrightarrow{Me} d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CH <sub>2</sub> C1CH <sub>2</sub> C1<br>50 °C 9€<br>10 h | 160 (dec.) <sup>d)</sup><br>; 184-187 |
| 5                       | c)       | $\beta_2$ | <sup>CH</sup> 2 <sup>C1</sup> 2<br>r.t. 95<br>l h        | ; 278-279 (dec.)                      |
| 6                       | b)       | $\beta_2$ $\beta_2$ $\beta_2$ $\beta_1$ $\beta_2$ $\beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CH <sub>2</sub> C1CH <sub>2</sub> C1<br>50 °C 95<br>10 h | 301-309 (dec.)                        |
| 7                       | b)       | $\mathcal{A}^{g_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CH <sub>2</sub> C1 <sub>2</sub><br>r.t. 98<br>20 h       | 3 212-221                             |
| 8                       |          | (f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CH <sub>2</sub> Cl <sub>2</sub><br>r.t. 98<br>20 h       | 3 214-221                             |
| 9                       | Ph a)    | Ph $Ph$ $e)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>2</sub> C1 <sub>2</sub>                          |                                       |
|                         | Ph<br>C1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r.t. 99<br>20 h                                          | 9 261-262 (dec.)                      |
| 10                      | c)       | $\bigcup_{\substack{S_2\\S_2\\C_1}} \bigcup_{j=1}^{C_1} \bigcup_{j=1}^{C_1} \bigcup_{j=1}^{C_1} \bigcup_{j=1}^{C_1} \bigcup_{j=1}^{C_2} \bigcup_{j=1}^{C_1} \bigcup_{j=1}^{C_2} \bigcup_{j=1}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o-dichloro-<br>benzene 83<br>reflux<br>6.5 h             | 230-234 (dec.)<br>345-348 (dec.)      |

## Table 1 Diels-Alder Reaction of 1,4-Benzodithiin 1,1,4,4-Tetraoxide with a Series of Dienes

a) 1.1 Equiv of dienes were used. b) These dienes were used in large excess (5-10 equiv). c) 2 Equiv of dienes were used. d) Two isomers were isolated by column chromatography in nearly equal amounts, one of which decomposes above 160 °C, and the other melts at 184-187 °C. e) Endo adducts were exclusively formed. f) Stereochemistry of these compounds is unknown. g) This compound melts at 230-234 °C with evolution of gas, solidifies, and remelts at 345-348 °C. The latter melting point corresponds to that of compound <u>Z</u> which has mp of 348-353 °C. In one case, the dehydrochlorinated compound <u>T</u> was directly obtained in 87% yield under the applied conditions.





the Diels-Alder adduct in 83% yield (entry 10). Treatment of the adduct with triethylamine affords compound 7 quantitatively.

Finally the adduct of  $\frac{6}{2}$  with anthracene was desulfonylated by 1.3% sodium amalgam in MeOH-THF (2:1) in the presence of sodium dihydrogen phosphate at room temperature. This resulted in the formation of dibenzobarrelene (8) in 66% yield,<sup>12</sup> thus suggesting that 6 functions as an acetylene equivalent.

## REFERENCES

- L. A. Paquette, R. E. Moerck, B. Harirchian, and P. D. Magnus, <u>J. Am. Chem.</u> Soc., 1978, 100, 1597.
- 2. L. A. Paquette and R. V. Williams, Tetrahedron Lett., 1981, 22, 4643.
- 3. R. V. C. Carr and L. A. Paquette, J. Am. Chem. Soc., 1980, 102, 853.
- 4. R. V. C. Carr, R. V. Williams, and L. A. Paquette, <u>J. Org. Chem</u>., 1983, <u>48</u>, 4976.
- 5. O. De Lucchi and G. Modena, Tetrahedron Lett., 1983, 24, 1653.
- 6. O. De Lucchi and G. Modena, J. Chem. Soc., Chem. Commun., 1982, 914.
- O. De Lucchi, V. Lucchini, L. Pasquato, and G. Modena, <u>J. Org. Chem</u>., 1984, 49, 596.
- 8. W. E. Parham, T. M. Roder, and W. R. Hasek, <u>J. Am. Chem. Soc.</u>, 1953, <u>75</u>, 1647.
- The Diels-Alder reaction of 1,4-dithiin 1,1,4,4-tetraoxide was quite briefly reported; W. E. Parham, H. Wynberg, W. R. Hasek, P. A. Howell, R. M. Curtis, and W. N. Lipscomb, J. <u>Am. Chem. Soc</u>., 1954, 76, 4957.
- A part of this work was presented at the 9th International Congress of Heterocyclic Chemistry, Tokyo, Japan, 1983, Abstr., No. P-181.
- 11. J. Nakayama, Synthesis, 1975, 38.
- 12. The desulfonation of this adduct was attempted under several conditions and the formation of 9,10-dihydro-9,10-ethanoanthracene as by-prduct was observed in other cases.

Received, 12th February, 1985

-1122 -