ANTIINFLAMMATORY 2.3-DIHYDRO-1H-PYRROLIZINES. 11: ADDITION OF 6,7-DI-PHENYL-2.3-DIHYDRO-1H-PYRROLIZINE TO DIMETHYL ACETYLENEDICARBOXYLATE AND DIETHYL AZODICARBOXYLATE

Gerd Dannhardt^{*} and Ludwig Steindl Naturwissenschaftliche Fakultät IV der Universität Regensburg Universitätsstraße 31, D 8400 Regensburg, Germany

Abstract - The addition of the litle compound to the acetylene and the azo derivative, resp., leads to C5 functionalized dihydropyrrolizines. Competitive 1 : 1 and 1 : 2 adduct formation is observed using the diethyl azodicarboxylate. A significant antiinflammatory activity is shown for the 5-hydrazopyrrolizine derivative (1 : 1-adduct) .

The pyrrolizine skeleton is an essential part of the biological active pyrrolizidine alkaloids¹, mitomycin antibiotics² and ant venom alkaloids³. 2,3-Dihydro-1Hpyrrolizine derivatives are potent antineoplastic⁴ and antiinflammatory^{5,6} agents, respectively.

According to their chemical behaviour and spectral data, **6,7-diphenyl-2,3-dihydro-**1H-pyrrolizines (DADHP) have to be considered as $1,2$ -brigded pyrroles⁷, therefore allowing structural variations at position 5 by electrophilic substitution. After stirring a mixture of <u>1</u> and dimethyl acetylendicarboxylate (1 : 2 equiv.) at
room temperature for 20 h, two compounds, <u>2a</u> and <u>2b</u>, were separated by column chromatography. Mass spectral data and elemental analyses indicate that both are ¹: 1 adducts. The NMR spectra represent the intact dihydropyrrolizine skeleton and two carbomethoxy singlets for each adduct; the H5 signal of starting 1 has disappeared.

The stereochemistry was determined by the chemical shift of the vinylic protons, because it is known⁸, that the proton resonance signal of analogous substituted fumaric esters (2a, $\delta = 6.74$ ppm) appears at lower field than the proton of the corresponding maleic compounds (2b), $\delta = 5.78$). Moreover, the strong absorption of the E-isomer 2a at 412 nm is hypsochromically shifted to 369 nm in the Z-isomer 2b,

a result, which is found for comparable pyrrole derivatives⁹, too. The ms of
<u>2a</u> and <u>2b</u> is characterized by successive elimination of two carbomethoxy 2a and 2b is characterized by successive elimination of two carbomethoxy groups and ring opening with loss of HCN.

The E/Z ratio 3 : 2 indicates that the addition is not stereospecific. The intermediate zwitterion is possibly transfered to the Z-isomer 2b by an intramolecular H-shift and to the E-isomer 2a by intermolecular protonation, respectively, as already **⁸**described for analogous systems . An acid catalyzed isomerisation could not be observed under the conditions $\langle CD_3COOH, 25^{\circ}C, NMR$ control) described. We suppose that the basicity of the 8-carbon atom in the double vinylogous enamine carbocylic esters 2 is decreased by the vicinal carbomethoxy groups and the diphenyl dihydropyrrolizine system, thus, the necessary sp^3 centre in the vinyl substituent could not be created by protonation.

The electrophilicity of diethyl azodicarboxylate in substitution¹⁰ and addition^{11,12} reactions is well known. Heating 1 and the azo compound (1 : 1 equiv) in boiling toluene afforded the expected adduct $\frac{3}{2}$ and a second product with the molecular formula $C_{31}H_{37}N_5O_8$ (elemental analysis, FD-MS: $m/z = 607$), which correspond to the 1 : 2-adduct $\underline{4}$. The IR spectrum of $\underline{3}$ shows a sharp NH signal at 3270 cm⁻¹ and two C=O signal at 1735 and 1700 cm^{-1} . The NMR data (see exp. section) agree with

 $-1220-$

structure $\frac{3}{2}$, too. Elimination of a 'NH-CO₂C₂H₅ and carbomethoxy radical, respectively, from the molecular ion is observed in the MS of 3. 13 C-NMR investigations on 4 pointed out that in 4 compared to 1 carbon C1 is paramagnetically shifted (27.34 ppm in 17), **56.84** ppm in 4) and splits off as doublet in the off-resonance Spectrum; therefore the position of the second hydrazo substituent was clear. All other spectroscopic data (exp. section) are in agreement with the shown 1 : 2 structure 4. 1 : 2-Adducts are also produced by reaction of azo dicarboxylate with 1,4-dihydrobenzene and 9,10-dihydroanthracene¹².

We suppose, that $1,4$ -addition to 5 is followed by ring opening of the tricyclic system to the enamine 6, which then adds to a second molecule diethyl azodicarboxylate. Thus, competitive electrophilic substitution at **C5** and 1,4-addition between 1 and the azo compounds leads to 3 (44 %) and 4 (22 %). Inhibition (53.8 $\,$ and 41.7 $\,$) of the carrageenin induced edema of the rat $_{\rm{paw}}^{13}$ is observed using 25 mg/kg and 2.5 mg/kg 4 , respectively, with p. o. application. **A** detailed study of pharmacologically active DADHP derivatives will be published elsewhere 6 .

ACKNOWLEDGEMENT

We are grateful to the Tropon Company, Köln, for pharmacological tests.

EXPERIMENTAL

Apparatus: Mp (Tottoli apparatus, uncorr.); IR spectra: Beckman Acculab III; YJV spectra: Xontron 810; NMR spectra: 'H-NMR spectra: varian EM **390** (90 MHZI. 0 measurements were performed with a sweep of **4800** Hz at **36** C in the PFT mode on a Bruker WH 90 spectrometer under noise and off-resonance decoupling, operating at **22.63** MHz. Chemical shifts in all cases are reported in **6** units from the internal standard TMS in CDC1₃. Mass spectra: Varian MAT CH 5 and 311 A, 70 eV, direkt insertion-probe. Microanalyses: Microanalytical laboratory, University Regensburg.

(6r7-Diphenyl-2,3-dihydro-lH-pyrralizin-5-yl)-dimethyl fumarate 2 and (6,7-Diphenyl-2,3-dihydro-1H-pyrrolizin-5-yl)-dimethyl maleate 2b: To a solution of 2.59 9 (10 mmol) 1 in 50 ml of benzene/dimethoxyethane (1/1) was added 2.84 g (20 mmol) of

HETEROCYCLES, **Yo1** 23, **No. 5, 1985**

dimethyl acetylenedicarboxylate in 10 ml of dimethoxyethane. The mixture afterwards was stirred for 20 h at room temperature, and then the solvens was distilled off. From the red residue 2a and 2b were separated by column chromatography (SiO₂, CH_2Cl_2).

2a (Rf = 0.8): Yield 0.85 g (21 %), vermilion crystals, mp 147° C (ethanol). $C_{25}H_{23}NO_4$ (401.4) Calc. C, 74.8; H, 5.77; N 3.4. Found: C, 74.1; H, 5.71; N, 3.3. IR 1725, 1620, 1610 cm⁻¹. UV λ max (loge) 412 (3.61), 272 (4.12), 242 (4.36). ²⁰⁵**nm** 14.50). 'H-NMR 6lppm) 2.21 - 2.62 lm, 2H, CZ), 3.05 **(t,** 2H, J = 7.0 Hz, Cl), 3.42, 3.55 (2s, 6H, 2 x CO_2CH_2), 3.81 (t, 2H, J = 7.0 Hz, C3), 6.74 **(s, 1H**, vinyl-H), 6.90 - 7.29 (m, 10 H arom.). MS: $m/z = 401$ (70 % M^{\dagger}), 341 (90 %), 342 (100 %) $M-CO_2CH_3$, 311 (66 8, 342-OCH₃), 283 (50 8, 311-CO), 255 (17 8, 283-HCN). 2b (Rf =0.5): yield 0.52 *g* (13 %), yellow crystals, mp 142⁰ C (ethanol). IR 1740, 1710, 1600 cm-l. UV Amax llog~) 369 (4.09), 265 **(sh)** , 235 (4.31), 205 nm (4.56). 1 H-NMR δ (ppm) 2.28 - 2.68 (m, 2H, C2), 2.99 (t, 2H, J = 7.0 Hz, C1), 3.41 and 3.60 (2s, $6H$, 2 x CO_2CH_3), 4.08 (t, 2H, J = 7.0 Hz, C3), 5.78 (s, 1H, vinyl-H), 6.85 -7.39 (m, 10 H arom.)

(6,7-Diphenyl-2,3-dihydro-lH-pyrrolizin-5-yl)-diethyl hydrazodicarboxylate 3 - 1.5-Di(diethy1 **hydrazodicarboxylate~-6,7-dipheny1-2,3-dihydro-lH-prrolizine** 4 1.73 g (10 mmol) Of diethyl azodicarboxylate in 20 ml of abs. toluene is added at 0° to a solution of 2.59 g (10 mmol) of 1 in 30 ml of abs. toluene; after the temperature had increased to room conditions the mixture was refluxed for 4 h. Eva poration of the solvent yields a brown residue. Separation of 3 and 4 was achieved by column chromatography (SiO₂, CH₂Cl₂/ethyl acetate = 9 : 1).

 $\frac{3}{2}$ (Rf = 0.8): yield 1.90 g (44 %), mp 143^o C (ethanol). C₂₅H₂₇N₃O₄ (433.2). MS (high resolution): Calc.: 433.20015. Pound: 433.19900. IR 3270, 1735, 1700, 1595 cm⁻¹. UV: λ max (loge) = 269 (sh), 240 (4.34), 206 nm (4.53). ¹H-NMR: δ (ppm) 1.11 - 1.49 (m, 6H, 2 x CO₂CH₂CH₂), 2.41 - 2.71 (m, 2H, C2), 3.63 (t, 2H, J = 7.0 Hz C1), 4.00 - 4.50 (m, 6H, C3 and 2 x CO₂CH₃CH₃), 6.59 **(s, 1H, NH)**, 7.01 - 7.41 (m, 10 H, arom.). MS: $m/z = 433$ (100 8 M^+), 360 (60 $8 \text{ M}-CO_2C_2H_5$), 345 (98 $8 \text{ M}-$ NHCO₂C₂H₅), 301 (19 %, 345 - C₂H₄O), 286 (25 %, 360 - HCO₂C₂H₅), 273 (80 %, 301-CO), 258 (55 %, 345 - NCO₂C₂H₅), 245 (23 %, 273 - C₂H₄), 230 (27 % , 258 - C₂H₄). $\frac{4}{5}$ (Rf = 0.2): yield 1.35 g (22 %), mp 160^oC (ether, -20^oC). $C_{31}H_{37}N_5O_8$ (607.6) Calc.: C_6 61.2, H,6.14; N,11.5. Found : C,61.0; H,5.90; N,11.6. IR 3300, 1760, 1710, 1610 cm⁻¹. ¹H-NMR δ (ppm) 0.90 - 1.45 (m, 12H, 4 x $CO_2CH_2CH_2CH_3$, 2.60 - 3.00 (m, 2H, C2), 3.88 - 4.50 (m, 10H, C3 and 4 x $CO_2CH_2CH_3$).

5.80 - 6.20 (m. 2H, C1 and NH), 6.60 **(s,** lH, NH), 6.90 - 7.40 (m, 10H arom.). 13 C-NMR δ (ppm) 14.36 (q, 4 x CO₂CH₂CH₃), 32.63 (t, C2), 44.63 (t, C3), 56.84 (d, C1), 62.08, 62.50, 63.12, 63.27 (4 x CO₂CH₂CH₃), 115.63 (s, C7), 122.19, 122.84, 125.74, 126.42, 127.07, 127.43, 128.08, 128.46, 128.57, 129.09, 129.35 (C arom.), 134.12 134.25 **(s,** C7a, C6), 155.16, 155.58, 155.92, 156.49 **(s.** 4 **x** C=O). FD-MS $(t\text{oluene}):$ m/z = 607 (100 $\text{\textsterling}~\text{M}^+$).

REFERENCES

- 1 D. J. Robins in: Advances in Heterocyclic Chemistry, vol. 24.p.247,J. Wiley & Sons, New York, 1979.
- 2 K. Nakano, Heterocycles, 13, 373 (1979); W. A. Remers, The chemistry of antitumor antibiotics, vol. 1, chapter 5, J. Wiley & Sons, New York 1979.
- 3 T. H. Jones. M. *S.* Hlum, H. M. Fales and C. R. Thompson, **J.** Org. Chem.,fi, 4778 (1980) .
- 4 W. K. Anderson, C. P. Chang and H. L. McPherson, J. Med. Chem., 26, 1333 (1983) and literature cited there.
- 5 G. Oannhardt and L. Steindl, Arch. Pharm. (Weinheim), in press.
- 6 G. Dannhardt, B. Pelster and L. Steindl, is being prepared for publication in Arzneim.-Forsch./Drug Research.
- 7 G. Dannhardt and R. Obergrusberger, Arch. Pharm. (Weinheim), 312, 896 (1979)
- 3 B. Giese, Ph. D. Thesis, University München 1969.
- 9 L. Mandell and W. A. Blanchard, J. Am. Chem. Soc., 79, 6198 (1957).
- 10 R. Huisgen, Osterr. Chemiker-Ztg. *55,* 237 (1954).
- 11 K. Alder, F. Pascher and A. Schmitz, Her. dtsch. Chem. *Ges.,?g,* 27 (1943).
- 12 K. Alder and H. Niklas, Liebigs Ann. Chem., 585, 81, 97 (1954).
- 13 K. H. Boltze, 0. Brendler, H. Jacobi, W. Opitz, R. Raddatz, P. R. Seidel and D. Vollbrecht, Arzneim.-Forsch./Drug Res., 30, 1314 (1980).

Received, 4th February, 1985