BORON TRIFLUORIDE ETHERATE-CATALYZED REARRANGEMENT OF 2,4,6,7- **TETPAPHENYL-1.3-OXAZEPINE** TO GIVE NOVEL PYRIDONE RING SYSTEM

Tomoshige Kobayashi and Makoto Nitta* Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 160, Japan

Abstract-The boron trifluoride etherate causes an efficient rearrangement of **2,4,6,7-tetraphenyl-1,3-oxazepine** to lead to 2,2,4,6-tetraphenyl-3-pyridone and 3,3,4,6-tetraphenyl-2-pyridone. The BF₃-coordinated pyridine-2.3-oxide is proposed as a reasonable intermediate.

The equilibrium for the valence isomerization of heteropines (1)-arene oxide (2) generally lies on the side of I. It was theoretically shown that protonation or coordination on the lone pair electron of the oxygen atom of la-2a strengthen the C-C bond of the oxirane ring in 2a so as to shift the equilibrium to the side of $2a.$ ¹ The thermodynamic² and kinetic studies³ of 1a-2a are suggestive for this prediction. Regarding the valence isomerization of 1,3-oxazepine (1b)-pyridine-2,3oxide (2b), 2b is postulated in the photochemical reaction of pyridine N-oxide, 4,5 or in the thermal reaction of 2-phenyl-1,3-oxazepine leading to 2-phenyl-3-hydroxypyridine at high temperature.⁶ In acid-catalyzed reaction of 2,4,5,6-tetraphenyl-1,3-oxazepine, protanation occurs on the nitrogen atom to result in a hydrolysis of the C=N bond.⁷ However, the 1,3-oxazepine undergoes a facile rearrangement to give 3-hydroxypyridine derivative on silica gel.^{4,8} Therefore, the coordination-effect on the equilibrium of lb-2b is also suggested.

We now report on the BF₃.0Et₂-catalyzed rearrangement of 1,3-oxazepine to lead to novel **2,2,4,6-tetraphenyl-3-pyridone** and 3.3.4.6-tetraphenyl-2-pyridone ring system,

suggesting the coordination of BF₃ shifts the equilibrium of $\underline{1b-2b}$ to the side of $\underline{2b}$. **2,4,6,7-Tetraphenyl-1.3-oxazepine (3)** and a 0.1 molar equivalent quantity of BF_3 . OEt, in anhydrous benzene were heated under reflux for 6 h to result in the formation of **2,2,4,6-tetraphenyl-3-pyridone** (1) (72%. mp 203-204 'C) and 3,3,4,6-tetraphenyl-2-pyridone (8) (10%, mp 162-163 °C). The elemental analyses are satisfactory for 7 and 8, and the structures were characterized on the basis of the following spectral data. For $\underline{?}: \vee_{\max}$ (CHCl₃) 1672 cm⁻¹; λ_{\max} (MeCN) 238 and 298 nm (log ε 4.02 and 3.72); $\delta_{\rm H}$ (CDCl₃) 7.17 (1H, s), 7.20-7.65 (16H, m), 7.90-8.15 (4H, m); m/z (rel intensity), 399 $(M^+, 100)$, 371 (99), 268 (6), 267 (9), 165 (95%). For <u>8</u>: v_{max} (CHCl₃) 1695 cm⁻¹; λ_{max} (MeCN) 248, 298sh, and 363 nm (logs 4.26, 3.88, and 3.45); $\delta_{\rm H}$ (CDCl₃) 6.75 (1H, s), 7.20-7.55 (16H, m), 7.90-8.15 (4H, m); m/z (rel intensity), 399 (M^+ , 10), 371 (100), 268 (29), 267 (24), 165 (9).

The formation of $\frac{7}{5}$ and $\frac{8}{5}$ is best explained by the mechanism in Scheme 2. The key step is the coordination of BF₃ on the oxygen atom of $\frac{3}{5}$ followed by the isomerization to give $\underline{4}$. The cleavage of either of the C-O bonds of $\underline{4}$ gives the intermediates 5 and 6. The phenyl migration in 5 and 6, and the subsequent decomplexation give $\frac{7}{2}$ and $\frac{8}{2}$. The predominant formation of 7 over 8 is ascribed to the more stable intermediate $\frac{5}{2}$, the resonance hybrid of which can be stabilized by the phenyl groups. Treatment of $\frac{3}{2}$ with BF₃.0Et₂ at ambient temperature for 20 h afforded no pyridone, and 3 was recovered in 95% yield. This fact clearly suggests that the equilibrium of $3-4$ is shifted to the side of 4 to some extent under reflux. The

N-coordinated complex *9,* which may exist in the equilibrium, could be inert under anhydrous conditions.

On the other hand, the reaction of $\frac{3}{5}$ with BF₃.0Et₂ in moist benzene proceeded even at ambient temperature to give $\underline{11}^7$ (1%), $\underline{12}^{\overline{10}}$ (7%), and $\underline{13}^7$ (42%), in addition to 3 (39%). Under reflux, this reaciton is completed whithin 3 h to give 11 (7%), $\frac{12}{3}$ (2%), $\frac{13}{13}$ (59%), and $\frac{14}{31}$ (24%), which results from the dehydration of $\frac{13}{31}$ (Scheme 31. The similar type of reaction was observed when **2,4,5,6-tetraphenyl-1.3** oxazepine⁷ and benz-1,3-oxazepines, 15^{12} and 17,¹³ were treated with proton acid, and the mechanism was nearly established. Hydrolysis of the C=N bond by proton generated from BF₃.OEt₂-H₂O gives 10. The complex 9, which could be inert under anhydrous conditions, may also react vith water to give 10.

Scheme 3

The reaction of $\underline{15}$ or $\underline{17}$ with BF_3 . OEt₂ in anhydrous benzene under reflux for 6 h afforded no product, and 15 or 17 was recovered in 71 or 92% yield, respectively. Since the possible valence isomers, 16 and 18, contain a quinoid structure, therefore they would be unfavorable energetically⁵ even in the presence of BF₃.0Et₂, unlike the case demonstrated in **3-4** (Scheme **4).**

REFERENCES

- 1 W. D. stohrer and R. Hoffmann, Angew. Chem., *84,* 820 (1972); W. D. Stohrer, Chem. Ber., 106, 970 (1973).
- 2 E. Vogel and H. Giinther, Angew. Chem. Int. Edit. Engl., *5,* 385 (1967).
- **³**H. Prinzbach and **P.** Vogel, Helv. Chim. Acta, *52,* 396 (1969).
- 4 G. G. Spence, E. C. Taylor, and O. Buchardt, Chem. Rev., 70, 231 (1970).
- 5 F. Bellamy and **J.** Streith, Heterocycles, 4, 1391 (1976).
- 6 T. Tezuka, 0. Seshimoto, and T. Mukai, **J.** Chem. Soc., Chem. Cammun., 373 (1974); T. Mukai, T. Kumagai, and O. Seshimoto, Pure Appl. Chem., 49, 287 (1977).
- 7 C. L. Pedersen and O. Buchardt, Acta Chem. Scand., 27, 271 (1973).
- 8 O. Buchardt, C. L. Pedersen, and N. Harrit, J. Org. Chem., 37, 3592 (1972).
- 9 J. P. Le Roux, J. C. Cherton, and P. L. Desbene, C. R. Acad. Sci., Ser. C, 280, 37 (1975).
- ¹⁰M. Takahashi, N. Inada, H. Kirihara, and S. Watanabe, Bull. Chem. Soc. Jpn., *51,* 3321 (1978).
- 11 M. J. Haddadin, B. J. Agha, and R. F. Tabli, J. Org. Chem., 44, 494 (1979).
- 12 J. P. Le Roux, **J.** C. Cherton, and P. L. Desbene, C. R. Acad. Sci. Ser. C, *278,* 1389 (1974).
- 13 O. Buchardt, B. Jensen, and I. K. Larsen, Acta Chem. Scand., 21, 1841 (1967); 0. Buchardt, Tetrahedron Lett., 6221 (1966).

Received, 8th March, 1985