HOMOLYTICAL ALKYLATION OF HETEROAROMATIC BASES BY CYCLIC ACETALS

Semen Solomonovitch Zlotsky^{*}, Vladimir Victorovitch Zorin, Yuri Borisovitch Zeletchonok, and Dilus Lutfullitch Rakhmankulov Ufa Oil Institute, Kosmonavtov Str.,1, Ufa, 450062, USSR <u>Abstract</u> Homolytical reaction between protonated bases and 1,3diheterocycloalkanes was described.

Alkoxylic radicals are known to react with 1,3-oxaheterocycloalkanes and attack preferably methylene or methenyl groups adjacent to two heteroatoms¹⁻³. In this connection we describe unexpected and surprising data of the work⁴, in which the main product of alkylation initiated by $(CH_3)_3C-0-0-H+FeSO_4$ system of protonated quinoxaline (I) with 1,3-dioxolane (II) is 2-(1,3-dioxolane-4-yl)quinoxaline (III) but not isomeric 2-(1,3-dioxolan-2-yl)quinoxaline(IV).

We repeated this experiment using a system of $R-0-0-H+FeSO_4(R=(CH_3)_3C;C_6H_5(CH_3)_2C)$ as initiator and found out that product (IV) is formed more selectively than isomeric substances (III)(Table I). Then we drew some 1,3-oxaheterocycloalkanes (II, VI-VIII) into homolytical alkylation of protonated 2-methylquinoline (V) using a system of $R-0-0-H+FeSO_4(R=H;C_6H_5(CH_3)_2C)$ as donor of alkoxylic radicals. In this case of compounds (II,VI,VII) we established parallel formation of 2- and 4-substituted 1,3-dioxacycloalkanes (IX-XIV), whereas oxathiocyclane (VIII) gave 2substituted product (XV) only.

We found out that selectivity of products (IX,XII) formation from 1.3-dioxolane (II) depends on initiator nature (Table I). Under the influence of hydroxyl radicals (system H202+FeSO4) 2- and 4-substituted products (IX,XII) are formed in equal amount whereas 4-(1,3-dioxolan-2-yl)-quinaldine (IX) is formed six times as much as its isomer (XII) under the influence of $C_6H_5C(CH_3)_2O$ radicals. At the same time the type of initiator does not influence the selectivity of formation of products from acetals VI and VII. We think that the difference in strength of C^2 -H and C^4 -H bonds in reaction with OH and $C_6H_5C(CH_3)_2O$ radicals practically does not exist. Simulteneously with the joining to aromatic system cyclic dialkoxyalkyl radicals react with ions Fe⁺³ resulting in formation of the corresponding carbocations which form in aqueous medium at first unstable 2-oxy-1, 3-dioxacyclanes and then monoformates of glycols XVI-XVIII. The rate of this reaction considerably depends on the cycle range in dialkoxyalkyl radicals; for example: oxidation of six- and seven-membered radicals proceeds much more rapidly than of 1,3-dioxolane-2-yl radicals $^{5-6}$. This fact is supposed to explain the decrease of selectivity of formation of X and XI in comparison with IX and XIV.

During this reaction monoformates of the corresponding diols (XVI-XVIII) are formed as accessory products. Reaction of protonated base with acetals (II,VI-VIII) was carried out in glass reactor under the following conditions: concentrated aqueous solution of $FeSO_4(0.06mol)$ and 30% solution of hydrogen peroxide (H_2O_2) or cumul hydroperoxide $(C_6H_5O(CH_3)_2OOH)(0.06mol)$ were added for 30 min intensively stirring at 5-10°C to the reaction mixture and pH 4~5. The reaction mixture contained 0.04 mol of the base (I,V) protonated by sulfuric acid and 0.02 mol of 1,3-diheterocycloalkane (II,VI-VIII); both were dissolved in 50 ml of water. The pH of mixture was maintained at level 4-5 by concentrated Na_2CO_3 solution. After the synthesis was finished pH of the solution was increased to level 12-13 by means of addition of NH_4OH solution and was extracted by ether. Ethereal extracts were joined together and vapored; products were isolated by column liquid chromatography method $(Al_2O_3, eluent, mixture of petrolein ether and diethyl$ ether in ratio 3.5:1).

TABLE I

The Yield of Hydrogen Atom Substitution Products in Quinaldine and Benzpyrazine on 1,3-Oxaheterocycloalkyl Residue at 5-10°; pH=4-5; reaction time 30 min

Acetals	Products	Yield of the reacted base, %				
ACCINIS	Tioudets	^H 2 ^O 2 ^{+Fe²⁺}	C ₆ H ₅ C(CH ₃) ₂ OOH + Fe ²⁺			
	0~01x	35	76			
		I 35	14			
	0 IV R*		71			
			8			
	R R	8	7			
	-	III 22	24			
		2	3			
			30			
	° × xv R	-	90			
Where R [*] =	(N) $R = ((N))$	DOL N CH3				

TABLE .	ΙI	
---------	----	--

Reaction Products Spec	tral Data and	Physico-Chemical	Constants
------------------------	---------------	------------------	-----------

		PMR			NMR				
Compounds	n ²⁰	Acetals Quinaldine		ine	Acetals		Quinaldine		
	D t°melt. °C		с ⁴ -н,с ⁵ -н с ⁶ -н,с ⁷ -н		Ar	C ₅	c ⁴ ,c ⁵ , c ⁷	C, Me	Ar
IX 4-(1,3-Dioxolan- 2-yl)-quinaldine	1.6058	6.15s	3.86s	2.588	7.0- 8.0s	100.7d	65 .2 t	25.0g	118.2- 158.5m
XII 4-(1,3-Dioxolan- 4-yl)-quinaldine	1.5875	5.03a	4.10- 4.70m 5.33t	2.58s	7.20- 8.03m		71.3t 74.3d		117.7- 158.3m
X 4-(1,3-Dioxane-2- yl)-quinaldine	-	5.62s	1.57- 1.80m 3.75- 4.05m	2.558	7.10- 7.93m	99.4d	32.4t 67.7t	26.ôg	119.3- 158.3m
XIII4-(1,3-Dioxan-4- yl)-quinaldine	<u> </u>	4.84d	1.75- 2.00m 3.63- 4.22m 4.87d	2. 55s	7.08- 8.00m	94.4t	34.4t 66.9t 74.4d		118.5~ 158.7m
XI 4-(1,3-Dioxypan- 2-y1)-quinaldine	-	6.00s	1.28- 1.90m 5.67- 4.00m	2.608	7.05- 8.05m		26.2t 66.4t	25.1 q	123.0- 158.7m
XIV 4-(1,3-Dioxypan- 4-yl)-quinaldine	- -	4.80d	1.30- 1.91m 5.20d	2.60s	7.10- 8.03m		28.9t 36.7t 67.4t 75.2d	29.1q	118.1- 158.3m
XV 4-(1,3-Oxathiolan 2-yl)-quinaldine	ne- 74	6 . 36в	2.81- 3.17m 3.70- 4.00m 4.23- 4.55m	2.628	7.06- 8.05m		34.4t 72.5t	25.8q	117.6- 159.1m

REFERENCES

- 1. G.W.Hartgerink, L.C.Van der Laan, I.B.Engberts and Th.De Boer, <u>Tetrahedron</u>, 1971,27,4323.
- 2. M.I.Perkins, B.P.Roberts, J.Chem.Soc.Perkins Trans., 1975, 1, 77.
- 3. A.L.I.Beckwith and P.K.Tindal, Austral.J.Chem., 1971, 24, 2099.
- 4. W.Buratti, G.P.Gardini, F.Minisci, F. Bertini, R.Galli and M.Perchinunno, <u>Tetrahedron</u>, 1971, 27, 3655.
- 5. V.V.Zorin, S.S.Zlotsky, V.F.Shuvalov, A.P.Moravsky, D.L.Rakhmankulov and Ya.M.Paushkin, <u>DAN SSSR</u>, 1977, 136, 106.
- V.N.Trifonova, V.V.Zorin, S.S.Zlotsky and D.L.Rakhmankulov, <u>Zhurnal Organit</u>cheskoy Khimii, 1982, 18, 1050.

Received, 5th November, 1984