REACTION OF N-ALKYLHETEROAROMATIC CATION WITH PHOSPHITE

Isao Takeuchi, Yasuhiro Shibata, and Yoshiki Hamada* Faculty of Pharmacy, Meijo University, Yaqoto-Urayama, Tempaku-cho, Tempaku-ku, Naqoya 468, Japan

<u>Abstract</u> — Treatment of <u>N</u>-methylquinolinium iodide (<u>1</u>) with trimethyl phosphite afforded dimethyl <u>N</u>-methyl-1,4-dihydroquinoline-4-phosphonate (<u>3</u>), whereas when <u>1</u> was treated with dimethyl sodiophosphonate, dimethyl <u>N</u>-methyl-1,2-dihydroquinoline-2-phosphonate (<u>2</u>) was obtained. The 2-phosphonate (<u>2</u>) underwent thermal rearrangement to the more stable 4-phosphonate (<u>3</u>). Similar results were obtained with some analogous heteroaromatics.

Redmore reported that dialkyl phosphonate anions add to <u>N</u>-alkyl quaternary salts of heteroaromatics, giving dialkyl α - or γ -phosphonate of the corresponding dihydroheteroaromatics.¹ Similar results were also obtained from reactions of <u>N</u>-acyl salts of heteroaromatics with trialkyl phosphites.² In recent years Akiba and his co-workers have developed a general synthesis of these types of phosphonate by treatment of <u>N</u>-acyl salts of heteroaromatics with trialkyl phosphites and sodium iodide in acetonitrile (MeCN).³ We investigated reactions of various <u>N</u>-acylbenzo-[f]quinolinium chlorides with trimethyl phosphite under these conditions, which gave rise to a mixture of the α - and γ -phosphonates in each case.⁴ As an extension of this work, we carried out the phosphonylation of <u>N</u>-methylquinolinium iodide and some analogues, and found that the α - or γ -phosphonates are selectively obtainable upon the reaction conditions and α -phosphonates undergo thermal rearrangement to γ -isomers.

Reactions of <u>N</u>-methylquinolinium iodide (<u>1</u>) with trimethyl phosphite and sodium iodide in MeCN (Conditions A) at 30° or 40°C gave the corresponding Y-phosphonate (<u>3</u>) as the sole product (Table I, entry 1, 2 and 4) or accompanied with a very small amount of the α -phosphonate (<u>2</u>) (Table I, entry 3). From the reaction at 40°C for 30 min, <u>3</u> was obtained in 52% yield (Table I, entry 4). On the other hand, when <u>1</u> was treated with dimethyl sodiophosphonate at 30°C for 15 min in a mixture of MeCN and benzene (10:1) (Conditions B), only the α -phosphonate (<u>2</u>) was

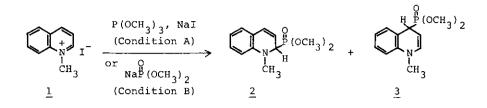


Table I. The Reaction of <u>N</u>-Methylquinolinium Iodide (1) with Phosphite

Entry	Condition	Solvent		Temp	Time	Yield	(8)
				(°C)		(<u>2</u>)	(<u>3</u>)
1	A	CH ₃ CN		30	5 min		4.7
2	A	CH ₃ CN		40	5 min		11.8
3	A	CH ₃ CN		40	10 min	0.8	15.7
4	А	CH ₃ CN		40	30 min		52
5	В	CH3CN-C6H6	(10:1)	30	15 min	57	
6	В	CH3CN-C6H6	(10:1)	75	2 h	24.4	36.6
7	В	CH ₃ CN-C ₆ H ₆		75	15 h		47
8	В	DMF		75	l h		24
9	В	C6 ^H 6		75	2 h	44	15

Table II. The Reaction of N-Methylheteroaromatic Cations with Phosphite

Entry	Methiodide C	onditio	on Solvent	Solvent		Time		Yield	(%)
								α-Phos- phonate	γ-Phos- phonate
	Benzo[f]quino				(<u>5</u>)	(<u>6</u>)			
10		А	CH ₃ CN		50	30	h		15
11		в	CH3CN-C6H6	(10:1)	5	10	min	66.5	5.5
12			CH3CN-C6H6		75	30	min		79
	Benzo[h]quinoline Methiodide (7)							(<u>8</u>)	(<u>9</u>)
13		А	CH 3 CN		50	1	h		30
14		в	CH3CN-C6H6	(10:1)	5	10	min	79	
15		в	CH ₃ CN-C ₆ H ₆	(10:1)	75	2	h	69	trace
	1,7-Phenanthroline 7-Methiodide (10)						(<u>11</u>)	(<u>12</u>)	
16		А	CH 3 CN		50	20	h		77
17		В	CH3CN-C6H6	(10:1)	10	10	min	89	
18			CH ₃ CN-C ₆ H ₆		75	1	h		72
	1,5-Naphthyridine l-Methiodide (<u>13</u>)						(<u>14</u>)	(<u>15</u>)	
19		А	CH ₃ CN		50	1	h		21
20		В	с _б н _б		75	2	h	30	
	1,8-Naphthyri	dine l	-Methiodide	e (<u>16</u>)				(<u>17</u>)	(<u>18</u>)
21		А	CH3CN		50	1	h		65
22		в	с _б н _б		75	2	h	43	

afforded in 57% yield, the γ -isomer (<u>3</u>) being not detected (Table I, entry 5). However interestingly, it was disclosed that, when the reaction was conducted at 75°C, the γ -phosphonate (<u>3</u>) was preferentially formed; the reaction for 2 h gave <u>2</u> and <u>3</u> in 24.4 and 36.6% yields, respectively, and only <u>3</u> was obtained in 47% yield from the reaction for 15 h (Table I, entry 6 and 7). Further the reaction at 75°C in DMF or benzene was explored (Table I, entry 8 and 9). These observations suggest the possibility of a thermal rearrangement of <u>2</u> to the more stable <u>3</u>. This was confirmed by the fact that <u>2</u> was converted into <u>3</u> in 45% yield upon warming at 75°C for 2 h in MeCN. Apparently such rearrangement is affected by polarity of solvents, and the ease of the rearrangement follows the order: DMF > MeCN > benzene (Table I, entry 6, 8 and 9). Comparable rearrangements were already documented for the reaction of <u>N</u>-methyl-3-cyanopyridinium iodide or <u>N</u>-methylquino-linium iodide with methoxide⁵ and cyanide ions⁶. However, this type of rearrangement of phosphonyl group seems to have no precedent.

Subsequently we explored the reactions of methiodide of benzo[f]quinoline (4), benzo[h]quinoline (7), 1,7-phenanthroline (7-methiodide, 10), 1,5- (13) and 1,8naphthyridine (16) under similar conditions and obtained results summarized in Table II. Yields were fairly varied, but the correlation of regioselectivity with the reaction conditions held for all systems; γ -phosphonate (6, 9, 12, 15 and 18) or α -phosphonates (5, 8, 11, 14 and 17) were selectively obtained under the conditions A or B, respectively. The thermal rearrangement of the α -phosphonate to the γ isomer occurred also in the derivatives of 4, 7 and 10, though we did not explore the possibility in the naphthyridine systems (13 and 16). The ease of rearrangement for the heteroaromatics studied was benzo[f]quinoline (4) > 1,7-phenanthroline (10) > quinoline (1) > benzo[h]quinoline (7); the γ -phosphonate (6) was formed, though as a minor product, even in the reaction of 4 at 5°C for 10 min under the conditions B (Table II, entry 11), whereas the reaction of 7 at 75°C for 2 h under the same conditions gave the α -phosphonate (8) as the main product (69%) accompanied with only a trace of the γ -isomer (9) (Table II, entry 15).

The structures of products were confirmed by spectral examinations. Particularly the values of coupling constants, J_{PCH} , in ¹H-NMR spectra are very informative for differentiation between α - and γ -phosphonates; the former constants are apprecia-

bily smaller (ca. 15-21 Hz) as compared with the latter ones (ca. 24-30 Hz).^{3,4,7} Thus, for example, $\underline{2}$ and $\underline{3}$ were assigned by the J_{PCH} values, 10.0 and 24.8 Hz, respectively.⁸

A typical procedure of the reaction as follows:

Condition A — <u>N</u>-Methylquinolinium iodide (0.01 mol) was added to dry CH_3CN (30 ml) at 0°C, the mixture was stirred for 10 min, and trimethyl phosphite (0.011 mol) and NaI (0.014 mol) were added successively at 0°C. The mixture was stirred at 40°C for 30 min. After cooling, water (60 ml) was added and the aqueous solution was extracted with benzene (2 X 30 ml). The extract was evaporated to afford an unstable colorless oil $\underline{3}^9$ (52%).

Condition B — <u>N</u>-Methylquinolinium iodide (0.01 mol) was added to a solution of dimethyl sodiophosphonate [derived from dimethyl phosphite (0.015 mol) and 60% NaH (0.014 mol)] in benzene (4 ml), and CH_3CN (40 ml). The mixture was stirred at 30°C for 15 min. After cooling, water (80 ml) was added and the aqueous solution was extracted with benzene (2 X 40 ml). The extract was evaporated. The crude product was washed with petroleum ether to afford an unstable colorless cil 2^{10} (57%).

REFERENCES AND NOTES

- a) D. Redmore, <u>J. Org. Chem</u>., 1969, <u>34</u>, 1420; b) D. Redmore, U.S. Patent, 1972, 3694144 [Chem. Abstr., 1973, <u>78</u>, 2998c].
- A.K. Sheinkam, G.V. Samoilenko, and S.N. Barnov, <u>Zh. Obshch. Khim</u>., 1970, <u>40</u>, 700 [<u>Chem. Abstr</u>., 1970, <u>73</u>, 14931].
- 3. a) K. Akiba, Y. Negishi, and N. Inamoto, Synthesis, 1979, 55;
 - b) K. Akiba, H. Matsuoka, and M. Wada, <u>Tetrahedron Lett.</u>, 1981, <u>22</u>, 4093;
 c) K. Akiba, T. Kasai, and M. Wada, ibid., 1982, <u>23</u>, 1709.
- 4. I. Takeuchi, Y. Shibata, Y. Hamada, Yakugaku Zasshi, 1984, 104, 1133.
- 5. S.W.H. Damji and C.A. Fyfe, <u>J. Org. Chem</u>., 1979, <u>44</u>, 1757.
- 6. A.I. Matern, E.O. Sidorov, and O.N. Chupakhin, <u>Zh. Org. Khim.</u>, 1980, <u>16</u>, 671 [<u>Chem. Abstr.</u>, 1980, <u>93</u>, 95107x].
- 7. K. Ishikawa, K. Akiba, and N. Inamoto, Bull. Chem. Soc. Jpn., 1978, 51, 2674.
- 8. The $J_{\rm PCH} values$ in the N-alkyl $\alpha\text{-phosphonates}$ are smaller than the N-acyl $\alpha\text{-phosphonates}.$
- 9. <u>3</u>: ¹H-NMR (CDCl₃) δ: 4.10 (1H, dd, J=24.0 Hz, PCH, 5.6 Hz), 4.50 (1H, m, PCCH), 6.07 (1H, dd, J=8.0, 6.8 Hz, PCCCH), 3.58, 3.65 (6H, d, J=10.8 Hz, P(OMe)₂), 6.59-7.28 (4H, aromatic protons), 3.03 (3H, d, J=2.0 Hz, N-Me). MS m/e: 253 (M⁺), 144 (M⁺-109).
- 10. <u>2</u>: ¹H-NMR (CDCl₃) δ: 4.44 (1H, dd, J=10.0 Hz, PCH, 6.0 Hz), 5.65 (1H, m, PCCH), 6.46 (1H, dd, J=(overlapped), PCCCH), 3.55, 3.63 (6H, d, J=10.4 Hz, P(OMe)₂), 6.44-7.22 (4H, aromatic protons), 2.92 (3H, d, J=2.0 Hz, N-Me). MS m/e: 253 (M⁺), 144 (M⁺-109).

Received, 7th December, 1984