REVISED STRUCTURE OF SANGGENON B¹

Yoshio Hano,^a Masato Itoh,^{a)} Toshio Fukai,^{a)} Taro Nomura,^{*,a)} and Shiro Urano^{b)}

a) Faculty of Pharmaceutical Sciences, Toho University, 2-2-1,
Miyama, Funabashi-shi, Chiba 274, Japan
b) Tokyo Metropolitan Institute of Gerontology, 35-2,
Sakae-cho, Itabashi-ku, Tokyo 173, Japan

Abstract — The structure of sanggenon B which had been isolated from the extract of the Chinese crude drug "Sang-Bai-Pi" (Japanese name "Sõhakuhi"), the root bark of <u>Morus</u> sp. (Moraceae), was reversed from the structure (1') to (1) on the basis of spectral data.

In the previous paper, 2 we reported the structure (1') for sanggenon B, which had been isolated from the benzene extract of the Chinese crude drug "Sang-Bai-Pi" (Japanese name "Sohakuhi"), the root bark of Morus sp. (Moraceae), on the basis of spectral and chemical data. Sanggenon B (1) is regarded biogenetically as a variation of a Diels-Alder type adduct of a chalcone derivative and a dehydroprenylflavanone derivative. Recently, we reported the structure (2) for mulberrofuran H which had been isolated from the root bark of cultivated mulberry tree (a cultivated variety of Morus lhou Koidz.).³ Mulberrofuran H is regarded biogenetically as a derivative induced from the Diels-Alder type adducts, such as chalcomoracin (3), $\frac{4}{3}$ mulberrofurans C (4), $\frac{5}{3}$ and J (5), $\frac{6}{3}$ through a mechanism described in Chart 1. The biogenetic pathway of mulberrofuran H (2) being considered, sanggenon B also seems to be a derivative induced from the Diels-Alder type adducts, sanggenons C $(6)^7$ and D $(7)^8$ through the similar mechanism. This consideration prompted us to reinvestigate the structure of sanggenon B. In this paper, we propose the revised formula (1) for the structure of sanggenon B from the following evidence. Comparison of the 1 H nmr spectra of 1, 1a, and 1b indicates that the acetylation of the hydroxyl group at the C-7 position caused down field shift (-0.19 ppm) of

Table | Chemical shifts (ppm) of C-8-H

RIO	
OR	RO
$ \underbrace{\overset{2}{\mathbf{S}}: \mathbf{R}_{1} = \mathbf{R}_{2} = \mathbf{H} }_{\mathbf{S} = \mathbf{R}_{2} = \mathbf{H}} $	$\gamma^{\circ}\gamma^{\circ}\gamma^{\circ}\gamma^{\circ}\gamma^{\circ}\gamma^{\circ}\gamma^{\circ}\gamma^{\circ}$
$\mathbb{R}_1 = \mathbb{R}_2 = \mathbb{R}_2$	OR 0

Η

RЬ

QR

H F

OR 17" OR

н 20''

ł

9:R=H

9a:R=Ac

1	5.88	ŗ	5.88	82	6.00	8	6.00	
la	6.07	<u>الم</u>	6.57	8 <u>a</u>	6.25	8b	6.70	
Δ	-0.19		-0.69	Δ	-0.25		-0,70	
2	6.24	s	solv.: acetone-d _c					
9a	6.63				0			
Δ	~0 39							

Table 2 Chemical shifts (ppm)

Table 3 Chemical shifts (ppm)

6.23

6.92

-0.69

С-11"-Н С-13"-Н

solv.: acetone-d₆ *: CDCl₃

6.42

7.04

-0.62

11

lla

Δ

	С-23-н	С-25-Н		С-10"-Н	С-12"-Н	
1	6.24	6.36	2	6.27	6.37	
1b	6.49	6.61	2a*	6,57	6.64	
Δ	-0.25	-0.25	Δ_	-0.30	-0.27	
	С-17"-н	С-19"-Н		solv.:acetone-d ₆ * :CDCl ₃		
11	6.38	6.51				
lla	6.62	6.78				
Δ	-0.24	-0.27				

12

12a*

Δ

С-5'-Н

6.59

7.12

-0.53

С-3'-н

6,55

7.11

-0.56

RO

ll:R=H

lla:R=Ac

			k		\		2.
C-2	101.2	C-5'	108.6	C-14	132.0	C-2"	135.6
C-3	90.8	C-6'	124,2	C-15	131.3	C-1"	132.4
C-4	186.6	C-9	31.2	C-16	70.6	C-6"	71.8
C-4a	98.7	C-10	117.2	C-17	27.0	C-7"	27.5
C-5	160.7	C-11	135.3	C-18	33.9	C-5"	34.6
C-6	109.7	C-12	25.1	C-19	30.9	C-4"	31.8
C-7	164.3	C-13	17.4	C-20	38.5	¢+3"	39.8
C-8	94.2			C-21	117.9	C-8"	119.0
C-8a	160.7			C-22	154.0	C-9"	155.2
C-1'	119.8			C-23	102.5	C-10"	103.9
c-2'	159.6	solv.: a	cetone-d ₆	C-24	156.0	C≁11"	157.8
C-31	98.3			C-25	107.0	C-12"	108.8
C-4'	159.7			C-26	129.1	C-13"	130.6

the proton at the C-8 position and that the acetylation of the hydroxyl groups at the C-7 and C-5 positions caused the larger down field shift (-0.69 ppm) of the proton (Table 1). Similar shifts were observed in the case of the proton at the C-8 position of sanggenon N (8) and its acetates (8a, 8b) (Table 1).⁹ On the other hand, the acetylation of the C-5 hydroxyl group of cudraflavone B (9) caused a down field shift (-0.39 ppm) (Table 1).¹⁰ These results suggest that sanggenon B has hydroxyl groups at the C-5 and C-7 positions so that the formula (1') for sanggenon B should be revised.

In the previous paper,² it was clarified that sanggenon B has the same flavanone skeletal structure as sanggenon A $(10)^{11}$ and that the C-6 side chain consists of a methylcyclohexene ring and a 2,4-dioxygenated phenyl moiety. To confirm the structure of the C-6 side chain, a comparative examination of the 1 H nmr spectra of 1 and 1b was carried out and it was found that acetylation of the C-24 hydroxyl group caused down field shifts (-0.25 ppm) of the protons at C-23 and 25 positioins in the E ring. Similar shifts were observed in the cases of the relevant E ring protons of 2 and its acetate (2a), ³ and the F ring protons of mulbarrofuran G (11)and its acetate (**11a**) (Table 2).¹² On the other hand, the acetylation of the 10" and 12" hydroxyl groups of 11 caused larger down field shifts $(-0.62 \sim -0.69 \text{ ppm})$ of the protons at C-ll" and 13" positions in the E ring.¹² Similar result was also reported in the case of the relevant B ring protons of morusin (12) and its acetate (12a) (Table 3).¹³ These results suggest that the 2,4-dioxygenated phenyl moiety (E ring) in the C-6 side chain of 1 has a hydroxyl group and the other oxygen atom forms an ether linkage. From the above results, the partial structure (1") was proposed. The presence of a tetrasubstituted methylcyclohexene ring $(C_2H_{\alpha}$ moiety) was suggested by the following examination of the 1 H nmr spectra of 1. The spectrum was analysed with the aid of sequential decoupling experiments, and the deduced two possible partial structures (**A** and **B**) are shown in Fig. 1. In the 1 H nmr spectrum of 1, the chemical shift values and the coupling constants of the protons of the $C_7 H_q$ moiety as well as the E ring were similar to those of the relevant protons of 2 (Fig. 2).³

In the 13 C nmr spectrum, the chemical shift values of the carbon atoms of the D and E rings of 1 were similar to those of the relevant carbon atoms of 2 except the carbon atom (C-14) which was affected by the additional substituent effect (Table 4).³ From these results, the partial structure (**A**) seems to be more favorable than the structure (**B**). Further supporting data for the proposed structure were

obtained by the following long-range selective ¹H decoupling technique: when the signal at § 1.45 (C-16-CH₃) was weakly irradiated, the signal at § 70.6 (C-16) increased the area (<u>ca.</u> +23 %). The irradiation of the signal at § 5.53 (C-15-H) increased the area (<u>ca.</u> +22 %) of the C-16 signal while causing a change in the shape of the signal. The irradiation of the signal at § 3.16 (C-19-H) also increased the area (<u>ca.</u> +3 %) of the same carbon signal. In the mass spectrum of 1, the characteristic fragment ion at $\underline{m/z}$ 460 (M⁺- C₆H₆O₂) seems to be formed through the similar route as in the case of mulberrofuran H (Chart 2).³ From these results, we propose the revised formula (1) for the structure of sanggenon B.

EXPERIMENTAL

Abbreviations: s=singlet, d=doublet, t=triplet, m=multiplet, br=broad, sh=shoulder, infl.=inflection. The general experimental procedures used are described in the previous paper.³

Acetylation of sanggenon B (1) (formation of la and lb)

Sanggenon B (1, 35 mg) was acetylated with acetic anhydride (2 ml) and pyridine (0.5 ml) at room temperature for 2 min, and treated as usual. The product was purified by preparative TLC (hexane:ether=2:3, silica gel) to give triacetate (la, 9.5 mg) and tetraacetate (lb, 8.2 mg).

Sanggenon B triacetate (la)

The compound (la) was obtained as an amorphous powder, positive to FeCl₃ test: green. uv λ_{max}^{EtOH} nm (log £): 229 (sh 4.12), 280 (sh 3.79), 283 (3.80), 294 (sh 3.62), 366 (3.10). ir $\gamma_{max}^{CHCl_3}$ cm⁻¹: 3590 (sh),3510 (br), 1760, 1640 (sh), 1630, 1615 (sh), 1590, 1580. EI-MS <u>m/z</u>: 696 (M⁺). ¹H nmr (90 MHz, acetone-d₆): § 1.45 (3H, s, C-11-CH₃), 1.50 (3H, s, C-16-CH₃), 1.57 (3H, s, C-11-CH₃), 1.90 (2H, m, C-18-H x2), 2.03, 2.20, 2.23 (each 3H, s, COCH₃), 2.22 (1H, d, J=16.5, C-20-H), 2.55 (1H, br d, J=16.5, C-20-H), 2.65-2.85 (1H, m, C-9-H), 3.24 (1H, m, C-19-H), 3.25 (1H, dd, J=9 and 15, C-9-H), 5.12 (1H, m, C-10-H), 5.40 (1H, br s, C-15-H), 6.07 (1H, s, C-8-H), 6.47 (1H, d, J=3, C-23-H), 6.56 (1H, 1H, dd, J=3 and 9, C-25-H), H), 6.74 (1H, d, J=2, C-3'-H), 6.78 (1H, dd, J=2 and 9, C-5'-H), 7.12 (1H, d, J=9, C-26-H), 7.57 (1H, d, J=9, C-6'-H), 11.53 (1H, s, C-5-OH).

Sanggenon B tetraacetate (1b)

The compound (**1b**) was obtained as an amorphous powder, negative to FeCl₃. uv λ_{max}^{EtOH} nm (log ξ): 228 (4.16), 275 (3.69), 282 (sh 3.64), 335 (2.90). ir ν_{max}^{CHCl} cm⁻¹: 3490, 1765, 1690,1655 (sh), 1613, 1587. EI-MS <u>m/z</u>: 738 (M⁺). ¹H nmr (90 MHz, acetone-d₆): S 1.46 (3H, s, C-11-CH₃), 1.50 (3H, s, C-16-CH₃), 1.60 (3H, s, C-11CH₃), 1.90 (2H, m, C-18-H x2), 2.04, 2.23 (each 6H, s, COCH₃ x2), 2.25 (1H, d, J= 16.5, C-20-H), 2.59 (1H, br d, J=16.5, C-20-H), 2.80-2.95 (1H, m, C-9-H), 3.26 (1H, dd, J=9 and 15, C-9-H), 3.28 (1H, m, C-19-H), 5.08 (1H, m, C-10-H), 5.36 (1H, br s, C-15-H), 6.49 (1H, d, J=2.5, C-23-H), 6.57 (1H, s, C-8-H), 6.61 (1H, dd, J=2.5 and 9, C-25-H), 6.71 (1H, d, J=2, C-3'-H), 6.79 (1H, dd, J=2 and 9, C-5'-H), 7.18 (1H, d, J=9, C-26-H), 7.58 (1H, d, J=9, C-6'-H).

REFERENCES

- This paper forms Part XXVIII of "Costituents of the Cultivated Mulberry Tree" [Part VI on Constituents of the Chinese Crude Drug "Sang-Bai-Pi" (Morus Root Bark)]. Part XXVII: T. Fukai, Y. Hano, K. Hirakura, T. Nomura, and J. Uzawa, <u>Chem. Pharm. Bull.</u>, submitted. Part V on Constituents of the Chinese Crude Drug "Sang-Bai-Pi" (Morus Root Bark): reference 9.
- 2. T. Nomura, T. Fukai, Y. Hano, and S. Urano, Planta Med., 1983, 47, 95.
- T. Fukai, Y. Hano, K. Hirakura, T. Nomura, and J. Uzawa, <u>Chem. Pharm. Bull.</u>, 1984, 32, 808.
- M. Takasugi, S. Nagao, T. Masamune, A. Shirata, and K. Takahashi, <u>Chem. Lett.</u>, 1980, 1753.
- 5. T. Nomura, T. Fukai, J. Matsumoto, and T. Ohmori, Planta Med., 1982, 46, 28.
- 6a. T. Fukai, Y. Hano, K. Hirakura, T. Nomura, J. Uzawa, and K. Fukushima, <u>Heterocycles</u>, 1984, 22, 1007; b K. Hirakura, Y. Hano, T. Fukai, T. Nomura, J. Uzawa, and K. Fukushima, Chem. Pharm. Bull., in press.
- 7. T. Nomura, T. Fukai, Y. Hano, and J. Uzawa, Heterocycles, 1981, 16, 2141.
- 8. T. Nomura, T. Fukai, Y. Hano, and J. Uzawa, Heterocycles, 1982, 17, 381.
- 9. Y. Hano, M. Itoh, N. Koyama, and T. Nomura, Heterocycles, 1984, 22, 1791.
- 10. T. Fujimoto, Y. Hano, T. Nomura, and J. Uzawa, Planta Med., 1984, 50, 161.
- 11. T. Nomura, T. Fukai, and Y. Hano, Planta Med., 1983, 47, 30.
- T. Fukai, Y. Hano, K. Hirakura, T. Nomura, J. Uzawa, and K. Fukushima, Heterocycles, 1984, 22, 473.
- T. Nomura, T. Fukai, S. Yamada, and M. Katayanagi, <u>Chem. Pharm. Bull.</u>, 1978, 26, 1394.

Received, 15th March, 1985