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Abstract - C(3)-n-Butyl and n-hexyl cephems have been prepared by the conjugate

addition of the appropriate organocuprate to the £(3)-chloro and C(3)~vinyl cephem.

We recently attempted to synthesize C(3}-alkyl cephem derivatives via the reaction of Grignard
reagents on C{3)-halo and other C(3)-electron rich cephems.' This reaction resuvlted in S(1)-
C{2)-secocephems via a SET (single electron transfer) mechanism. We now report the use of
organocuprate reagents to prepare various C(3)-alkyl cephem derivatives. Lithium organocuprates
are known to undergo conjugate addition via a SET mechanism to give copper complexes which then
undergo an intramolecular rearrangement to give the product.2 It was anticipated that the
difference in the mode of transfer for the R group would result in the desired C({3)-alkyl cephem
products. Indeed, the C(3)-chloro cephem 1A reacted with lithium dimethylcuprate to give a 50%
vield of the C(3)-methyl compound 2. C(3)-S-Phenyl 1B also reacted with lithium dimethylcuprate
to give 28% 2 plus 24% starting material, however, C(3)-OMe gave 39% A% (isomerization of the
double bond)} plus 389% starting material, while the C(3)-morpholine-enamine gave 97% starting
materiasl. Under these conditions the C{3)-mesyvlate gave 58% enol, while the C(3)-

di_ethylphosphonate3 gave 347 starting material.
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Other esters of V-C{3)-chloro cephem, i.e. benzhydryl and trichloroethyl, work equally as well

(39%, 37%), however, p-nitrobenzyl was unacceptable, resulting in decomposition.
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lUnder the conditions described for the conversionm of 1 to 2, lithium diphenylcuprate failed to

react with 14, while lithium diallylcuprate gave 37% of the C{3}-hydre derivative, that is the
reduced product plus 43% starting material. Lithium di-n-butylcuprate reacted with 3 to give a
47-57% mixture of A%2-C(3)-Cl 4 and A2-C(3)-n-butyl 5 (ca. 1:1). This mixture preved very difficult
to separate by any means, as were the sulfoxides of 4 and 5. However, the chlora derivative 4

can be converted to the encl & via the epamine, thus drastically changing its Rf and allowing easy

separation of 5 by silica chromatography.
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Compound 5 was then converted to the A3-derivative by sulfur oxidation and reduction.?’% The side
chain was then cleaved®’? and the D-a-phenylglycine derivative 7 was prepared.
The Corey-Posner reaction® on the A®-iodomethyl derivative 8 with lithium di-n-butylcuprate gave

17% C€(3)-amyl 9 plus 30% C(3)-methyl 10, i.e. the reduced product. This sequence has been studied

by workers at Glaxo.®
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Another reute to C{3)-lipophilie¢ cephems, however, is wia 1,6-conjugate addition of lithium
di-n-butylcuprate with the C(3)-vinyl cepheml® 11 which occurred in 82% yield to give the
exocyclic olefin 12''. Proof of structurs was by physical data {nmr, ir, mass spec.) and by

the conversion to the C{3)-methoxy derivative 13.
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Use of less reactive organocuprates, for example lithium dimethylcuprate, resulted in lower
vields (29%) of the exomethylene derivative 1612, The major product was 17 (57%), presumably
resulting from the Michael addition of the intermediate cuprate onto the starting material. The

reaction of cuprate intermediates with electrophiles is well known. 12
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The exocyclic double bond in 12 proved somewhat resistant to isomerization, requiring 5 equiv-

alents of triethylamine in N,N-dimethylformamide at room temperature for 19 h. to give a 96%

yield of a mixture of the olefins 14 after chromatography.

reduction'® and side chain cleavage followed by acylation and deblocking gavé the D-o-phenyl-

glycine derivative 1815,
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Table I shows the in-vitro microbiological activity of the various C(3)-alkyl-substituted cephems
with the D-o-phenylglycine side chain. Increasing the lipophilic character at C(3) appears to

enhance the gram positive activity with concomitant loss in the gram negative antibacterial

Sulfur oxidation (1%2-143°C),

n'Cqu

n—CBH13

activity.
TABLE I
b
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! =S
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o- Y R
COoH
MIC (pg/ml)
Staph. Staph. H. influenzae E. coli
R aureus epidermidis (amp)}
Vil S13E 222 CL TEM
CHg 8 64 8 16 8
Et 16 16 2 8 16
n-C4Hg 4 4 0.5 8 32
n-CgHyg 0.5 2 0.25 4 128
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