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Abstract - The 1,3,4-thiadiazoline 2, prepared from 2,2,4,4-tetra-
methylcyclobutane-1-one-3-thione and diazomethane, loses N, at
40°C; the thiocarbonyl ylide 5 is a transient intermediate which
in situ undergoes 1,3-dipolar cycloadditions to electron-deficient
dipolarcophiles with C=C, Cc=C, C=8, C=0, and N=N bonds. Structures

and mechanism are discussed.

Although simple aliphatic thiocketones are known,1'2

only the sterically hindered re-
presentatives are storable in the monomeric state. Their merciful inertness toward

the human clfactory system contributes to the ease of handling.

In 18970 Diebert 3 reacted the red 2,2,4,4-tetramethylcyclobutane-1-one-3~thione t1)4
with diazomethane and isolated 67% of the spirothiirane 3; the structure of the spi-
ro-1,3,4~thiadiazoline (2} was assigned to an intermediate which was observed at 0°C

as a white solid.
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We passed gaseous diazomethane into 3 mmoles of 1 in 10 ml ether at -78°C, evapora-

ted at 0°C and dissolved the crystalline residue in 10 ml pentane. After 30 min at
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-78°C, 88% of the colorless 2 were filtered, mp 40-42°C (dec.); 1H NMR (CDC13): 5 =
1.23 (s, 2 CH3), 1.31 (s, 2 CH3), 5.84 (s, 5—H2). Correct CH, N, S analyses of 2

were obtained. The N, extrusion of 2 obeyed first-order kinetics with t”2 = 25 min
at +45°C in xylene, in agreement with Diebert's measurement (t1/2 = 22 min at 49°C

in CC14).3 2,2-piphenyl=-1,3,4-thiadiazoline (4) loses N, with t1/2 = 55 min in THF

2
at -45°¢C > whereas 2,2,5-triphenyl-1,3,4-thiadiazoline decompcses at -65°C with

t v 30 sec.6 Thus, alkylated thiadiazolines are more stable than arylated ones.

1/2

The elimination of N2 from 2 is a 1,3-dipolar cycloreversion and the thione S-meth-
ylide 5 the expected intermediate. The electrocyclization of the planar thiocarbo-
nyl ylide system in 5 giving the thiirane 3 is accompanied by two 90° rotations
about the CS bonds. Such processes require substantial activation energy because
most of the rescnance energy of 5 is sacrificed in the transition state. Experience
shows that {ntermolecular interception by active dipolarophiles is usually faster.
The pioneer work of Buter, Wassenaar, and Kellogg 7 demonstrated that thiccarbonyl

ylides are involved in the N, extrusion from alkylated thiadiazolines. We have re-

2
cently described 1,3-dipclar cycloadditions of adamantanethione S-methylide (8},

prepared in analogy to 5, to electron-deficient dipolarophiles with CC double and

triple bond as well as CD and CS double bond.s'9

The thiccarbonyl ylide 5 is basic. When 2 was warmed in methanol with a drop of tri-

fluorcacetic acid for 8 h at 40°C, !

1

H NMR analysis indicated 80% of the 0,5-dimethyl-
acetal 7; mp near 20°C, H NMR (CDC13}: § = 71.32 (s, 4 CH3), 1.92 {s, SCH3), 3.37
(s, OCH3). The protonated species 6 is a logical intermediate and the CH, group of

5 is the more basic center among the two termini.

2,2,4,4-Tetramethylcyclobutane-t-one-3-thione S-methylide (3} is an active 1,3-di-
pole despite a steric encumbrance at one terminus which by far exceeds that of 8.
After warming pure 2 in THF in the presence of 1.1 equiv of dipolarophile for 8 h at
40°C, the evolution of N, was complete. The less active dimethyl acetylenedicarboxy-
late was used in exXcess as solvent. Quantitative 1H NMR analysis (CDC13) by compari-~
son with a weighed standard (1,1,2,2-tetrachloroethane) afforded the yields ;isted

in Table 1. The isolated adducts were characterized by analyses and spectra.

The WMR spectra of the cycloadducts are reliable probes of symmetry or chirality,
respectively. Adducts 9 and 10 show singlets for S—H2 and pairwise equivalence of

the methyl signals: ¢ 1.25 and 1.42 for 9, 1.45 and 1.95 for 10. The e wur spec-—
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Table 1. Reactlons of thiadiazoline 2 with dipolarcphiles in THF

(8 h 40°C); adduct yields based on 1H NMR analysis (isolaticn)

Dipolarophile % adduct mp (°C) Formula
Dimethyl acetylenedicarboxylate 87 76-78 9
Fumaronitrile 93 111-113 11
Maleonitrile 92 140-142 1z
Maleic anhydride (76) 207-209 13
N-Phenylmaleimide (76) 194-19%6 14
Tetracyanocethylene 73 213-215 10
trans-f=Nitrostyrene 72 121-123 15
Thiobenzophenone 56 124-126 17

+ 23 {not isol.) 18
Thioxanthione {95) 174-177° 19/20
Adamantanethione 88 139-141 21

2,2,4,4-Tetramethyl-cyclo-

butane~1-one-3-thicne 76 159-161 22
Chloral 95 65-67 24
Dimethyl azodicarboxylate 58 110-112 25

=
\(':‘H:;

3.4

+-
S
339 (CHC :<le2

16

14 X = NCgHs

trum of 10 records § 67.8 for C-2' + C-4', 22.9 and 22.7 for ¢ CH3 as well as 110.0

1

and 110.5 for 4 CN. Complex ABXY patterns appear in the H NMR spectra of the chij-

ral adducts 11-15, sometimes only the doublet of 3-H being resolved. All the methyl

groups are different, e.g., § 1.30, 1.42, 1.55, 1.65 for 11. In the '°

C NMR (CDCL,)
of 13 the 4 CH3 were observed and three singlets are assigned teo C-2', C-3', and

c-4'.
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trans-f-Nitrostyrene furnished only isomer 15 within the limits of the 1H NMR spec-

trum. The dcublet of 3-H at & 5.45 -~ in contrast to 6(3-H) = 3.87 for 11 and 12 -
leaves no doubt that the deshielding nitro grcup is located in 3=-position. Thus,

the CH, terminus of 5 is the more nucleophilic center.

The cycloadditicons to fumaronitrile and malecnitrile proceed stereospecifically;

within the 1H NMR analytical limits no mutual admixture of 11 and 12 cculd be re-

cognized. J4 4 dmounts to 2.3 Hz for 11 and 4.5 Hz for 12, compared with 3.0 Hz for
r

15 and 7.0, 6.2 Hz for 13 and 14.

The base peak cf most mass spectra correspconds to M- C4 6 Z{.2,, the eliminaticn
of dimethylketene provides radical cations 16. Alsc the peak of dimethylketene radi-
cal cation is present, and the ratio of the two peaks depends on the ionization po-
tentials: 100:95 for 11, 100:80 for 12, 100:20 for 13, but 5:100 for the tetracyano-
ethylene adduct 10. The base peak of 15 is m/e 203 M- C,H,0 — NO,) and the occur-

rence of m/e 104 (styrene+, 35%) is in acceordance with the addition direction.
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Both orientations were used by thichenzophenone as a dipolarophile: 56% 17 and 23%
18. The minor product was enriched by thick-layer chromatography, but not obtained
pure. The major product 17 likewise resulted from the reacticn of thichenzophenone
g-methylide with the thione 1 (90%) at -45°C; this convergence proves the presence

of -5-CH,-5- in 17. Aromatic thione S-methylides always follow this course in their

10,11

2
"Schénberg reactions" with dipolarcphilic €5 double bonds, Z.2., the fype 4

of the preceding communication.9 Conceivably, it is steric hindrance which makes the
type B addition - yielding 18 here - competitive. Structures 17 and 18 are confirmed

by the 13C NMR diagnostic criterion previously used.9 §(C=-2) of 17 emerges at 25.3
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and ${C-5} of 18 at 50.0. The corresponding 1H NMR singlets appear at & 3.32 for
2—H2 of 17 and at 3.75 for 5-H2 of 18. A plane of symmetry reduces the number of

1H and 13(2 signals for 17 and 18.

Thioxanthione afforded a 5:1 mixture of 19 and 20 in high yield, but the separation
did not succeed. The '°C triplets of 2-CH, (19) ard 5-CH, (20) were found at § 37.4

and 45.0. In the 1H NMR spectrum the CH, pairs of 19 emerge at § 0.79 and 1.24 whe-

3
reas those of 20 coincide at 1.37; the high-field absorpticn of 19 (0.79) reve-

als the shielding by the aromatic nuclei.

The addition of 5 to adamantanethione (88% 21) and thione 1 (76% 22} followed the
type B 9 pattern with its lower steric requirements. A diminished dipolarophilic
activity of 1 is concluded from the modest yield of 22 and the presence of 10% thi-
irane 3. Diebert 3 isolated 31% of 22 when he treated thione 1 with 0.8 equiv diazo-

10 was recognized,3 but

methane. The analogy with Schénberg's dithiclane formation
its mechanism was not yet understocd at the time. The first 1,3-dithiolane of #y-
re B was described in 1965 as a 2:1 precduct from hexaflucrothioacetone and diazo-

methane (-78°C).12

3¢ triplets at & 47.0 (21) and 43.4 (22) for C-5 mark both adducts as belonging

to type B. According to 1H and 13C

NMR evidence, 22 and 21, possesses one ¢, plane,
Z.e., the two cyclobutanone systems in the doubly spiro linked 22 are non-equivalent.

The mass spectra corroborate structures 21 and 22. Besides the elimination of di-

methylketene (M'- C4H¢0), the fragmentation of 21 into CgH,,$,0° (15%) - probably
23 - and C11H16+ {2-methyleneadamantane, 15%) is indicative of type B.g
H
S H. S -“H
=K sl 0= 5N
cely N7 cocH,
€0,CH,
24 25

The expectation of structure 24 for the chloral adduct {95% yield) is confirmed

by the ABX spectrum of the 1,3-oxathiolane protons: dd of 5-H at § 4,55. As foreseen,
small signals, m/e = 318 and 316, occur as parent peaks due to 3701 and 35C isoté-
pes: m/e = 248 (B5%) and 246 (85%) are the peaks for M- C4H O whereas m/e = 70
(C4H60+) constitutes the base peak. The interaction of 2 with dimethyl azodicarbox-

ylate led to 25. Its heteroring rests in a frozen non-planar conformation, as the
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AB spectrum of the 5-H, (§ 4.38 and 4.58, J = 7.5 Hz) and the nonequivalence of the

2
methyl groups (§ 1.27 for 2 CHy, 1.40, 1.65) testify.

The synthetic potential of the cycloadditions of thiocarbonyl ylides goes beyond
the preparation of 5-membered S-containing heterocycles. The easy removal of sulfur
by C5 hydrogenolysis recommends the reaction sequence as a method of CC linking of

three units {(thione, diazoalkane, dipclarophile).

We presume that a thermodynamic facter contributes to the superiority of the CS
over the €0 double bond as dipolarocphile. The m bond which is sacrificed in the
cyclecaddition amounts to 94 kcal mol™! for CO {(ketones) and to 55-60 kcal mol™!

for €S; a portion of the difference may become effective in the transition state

of the concerted cycloaddition.
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