CHEMISTRY OF METALLO-KETENE-S, N-ACETALS. NEW SYNTHESIS OF AZACYCLOALKA[2,3-d]PYRIMIDINES

Hiroki Takahata, Toshiaki Suzuki, and Takao Yamazaki* Faculty of Pharmaceutical Sciences, Toyama Medical & Pharmaceutical University, 2630 Sugitani, Toyama 930-1, Japan

<u>Abstract</u> Bis-lithio-ketene-*s*,*N*-acetals, generated from thiolactams by treatment with n-BuLi, react with aryl isothiocyanates to give dithioamides. Bismethylation of the dithioamides followed by condensation with benzamidine affords the azacycloalka[2,3-d]pyrimidines.

The thioamide group plays an important role in synthetic methodology due to its versatility^{1,2} and has been utilized in the synthesis of many natural products.³ The carbon-carbon bond-forming reactions employing metallo-ketenes, N-acetals derived from the thioamides have recently been demonstrated.⁴ There, however, have been few attempts to use metallo-ketene-s, N-acetals in the heterocyclic synthesis.⁵ We here describe a new synthesis of azacycloalka-[2,3-d]pyrimidines (10a-c and 11a-c) adopting new 1,3-bis-electrophilic reagents (8 and 9) obtained by the reaction of cyclic bis-lithio-ketene-s, Nacetals (3 and 4) derived from thiolactams (1 and 2) with aryl isothiocyanates (5) as electrophiles followed by bismethylation.

The bis-lithio-ketene-S, N-acetals (3 and 4), generated from thiolactams (1 and 2) by treatment with 2 equiv. of n-BuLi (0°C, 1 h, THF), reacted with aryl isothiocyanates (5a-c) to afford the dithioamides (6a-c and 7a-c),⁶ respectively.⁷ Bismethylation of 6a-c and 7a-c with MeI in the presence of K_2CO_3 gave the dithioimidates (8a-c and 9a-c), respectively, which are regarded as 1,3-bis-electrophilic reagents. Compounds 8a-c and 9a-c without purification were allowed to react with benzamidine hydrochloride as bis-nucleophile in the presence of NaH (3 equiv.) [reflux, 15 h, toluene/DMF (20:1)] to provide the azacycloalka[2,3-d]pyrimidines (10a-c and 11a-c)⁶ of pharmacological interest in moderate yields, respectively.

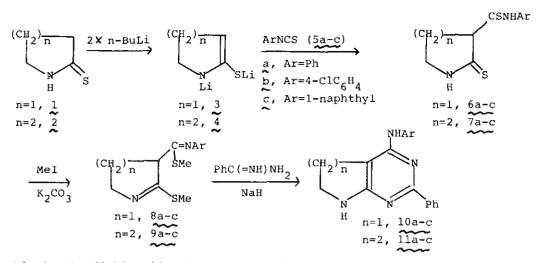


Table 1. The dithioamides (6a-c and 7a-c). Table 2. The Azacycloalka[2,3-d]

....

. . .

	-		pyrimidines	(10a-c and 11a-c).
mp °C	Yield (%)	Compound	mp°C	Yield (%) ^a
144-146	53	10a	190-193	35
159-161	43	10b	225-229	25
138-140	58	10 <i>c</i>	210-215	17
161-165	54	11a 🗙	146-148	25
173-176	58	11b	160-165	22
165-170	49	11c	145-150	32
	144-146 159-161 138-140 161-165 173-176	144-146 53 159-161 43 138-140 58 161-165 54 173-176 58	144-146 53 10a 159-161 43 10b 138-140 58 10c 161-165 54 11a 173-176 58 11b 165-170 49 11c	mp °C Yield (%) Compound mp °C 144-146 53 10a 190-193 159-161 43 10b 225-229 138-140 58 10c 210-215 161-165 54 11a 146-148 173-176 58 11b 160-165 165-170 49 11c 145-150

a Overall yields from (6a-c and 7a-c).

Further heterocyclic synthesis employing readily available 3 and 4 is now in progress.

ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in-Aid for Scientific Research to H.T. from the Ministry of Education, Science and Culture, Japan (No. 59771639).

REFERENCES AND NOTES

- W. Walter and J. Voss, "The chemistry of the thioamides', in J. Zabicky (ed.), "The chemistry of amides", Intersciences Publ., London (1970), pp 383-475.
- T. Harada, Y. Tamaru, and Z. Yoshida, <u>Tetrahedron Lett.</u>, 1979, 3525, and references cited therein.
- 3. a) K. Shiosaki and H. Rapoport, <u>J. Org. Chem.</u>, 1985, <u>50</u>, 1229; b) J. S. Petersen, G. Fels, and H. Rapoport, <u>J. Am. Chem. Soc</u>., 1984, 106, 4539;
 c) P. Magnus and P. Pappalardo, <u>J. Am. Chem. Soc</u>., 1983, 105, 6525; d)
 D. A. Evans, E. W. Thomas, and R. E. Cherpeck, <u>J. Am. Chem. Soc</u>., 1982, 104, 3695; e) S. Takano, M. Hirama, M. Araki, K. Ogasawara, <u>J. Am. Chem. Soc</u>., 1976, <u>96</u>, 7084.
- 4. a) Y. Tamaru, Y. Furukawa, M. Mizutani, O. Kitao, and Z. Yoshida, <u>J. Org.</u> <u>Chem.</u>, 1983, <u>48</u>, 3631; b) C. Goasdoue, N. Goasdoue, and M. Gaudemar, <u>Tetrahedron Lett.</u>, 1983, <u>24</u>, 4001.
- We previously reported the new synthesis of polyfunctionalized pyridine-2-thiones using bis-lithio-ketene-S, N-acetals. H. Takahata, T. Nakajima, and T. Yamazaki, <u>Chem. Pharm. Bull.</u>, 1984, 32, 1658.
- All new compounds were fully characterized spectroscopically (IR, ¹H NMR, and MS spectral) and by combustion.
- 7. Attempted reaction using lithio-ketene-S,N-acetal, generated from cyclic thioimidate (2-methylthio-1-pyrroline) by treatment with LDA, in place of of 3 gave an intractable mixture.

Received, 23rd May, 1985