NITROGEN BRIDGEHEAD COMPOUNDS PART 571. SYNTHESIS OF NEW 1-THIA-2a,5a-DIAZAACENAPHTHENES

István Bitter a1 , Gábor Tóth a2 , Béla Pete a1 , Attila Almásy s2 , István Hermecz b , and Zoltán Mészáros b

- al Technical University, Depertment of Organic Chemistry and Technology, H-1111 Budapest, Hungary
- a2 NMR Laboratory of the Institute of General and Analytical Chemistry, H-llll Budapest, Hungary
- b CHINOIN Pharmaceutical and Chemical Works, H-1325, Budapest Hungary

<u>Abstract</u> - The first representatives of a new ring system, the 1-thia-2a.5a-diazaacenaphthenes are prepared by the reaction of 9-bromo-6,7.8,9-tetrahydro-4<u>H</u>-pyrido[1,2-<u>a</u>]pyrimidin-4-ones with alkali thiocyanates.

During our studies on synthesis of new annellated derivatives of biologically active pyrido $[1,2-\underline{a}]$ pyrimidin-4-ones recently the first derivatives of 2,3a,6a-triazaphenalenes were prepared As a continuation of this work we wish to describe herein the first synthesis of 1-thia-2a,5a-diazaacenaphthenes.

For this purpose the reactivity of 9-bromo-6,7,8,9-tetrahydro-4 $\underline{\text{H}}$ -pyrido[1,2- $\underline{\text{a}}$]-pyrimidin-4-ones⁴ was utilized. With nitrogen bases a very smooth S_N reaction⁵ and sometimes subsequent oxidation^{5a-c} have been observed. Making use of extreme reactivity of the 9-bromo derivatives further substitutions with other nucleo-philes, e.g. CN^- , N_3^- , NO_2^- , I^- , SH^- , R_2NCSS^- , and thioureas have also been accomplished⁶.

Br SCN SCN
$$\frac{1}{S} = \frac{2}{N} \frac{NH_2}{NH_2} = \frac{1}{S} = \frac{1}{S} = \frac{N}{N} = \frac{N}{N}$$

a) R = COOEt; b) R = CN; c) $R = CONH_2$; d) R = COOH

Compounds $\underline{1}$ (ca. 1:4 <u>cis-trans</u> mixture)^{4c} readily reacted with equimolar potassium thiocyanate in acetone at room temperature affording $\underline{2}$ which without isolation⁷ immediately cyclized by equimolar amount of aqueous hydrochloric acid and

the yellow hydrogen chloride salts $(\underline{3})^8$ were precipitated from the solvent. The free bases of red colour $(\underline{4})$ could be liberated from the salts $(\underline{3})$ by triethylamine⁹. The structure of the new tricyclic ring system is unambigously proved by correct elemental analysis, IR and NMR spectra of compounds $\underline{3}$ and $\underline{4}$. Although the fact of the ring closure is nicely indicated by the IR spectrum not containing $\sqrt[3]{SCN}$ band, $\sqrt[1]{H}$ and rather $\sqrt[13]{C}$ NMR spectra give strong evidences for the cyclization.

In 1 H NMR spectra of compounds $\underline{3}$ remarkable downfield shifts ($\Delta\delta\sim 1$ ppm) of the H-3 signal occur comparing with that of the starting material (1) 10 . It is due to the deshielding effect the neighbouring iminium group. 13 C NMR show three signals characteristic of the new thiazoline ring: C-2 at 164 ppm, C-8b at 127 ppm and C-8a at about 90 ppm. Deprotonation of salts $\underline{3}$ to compounds $\underline{4}$ caused a pronounced upfield shift on C-2, C-4, C-8a, and C-8b.

1H NMR	Chemical	shifts	JEOL FX÷100	solvent	DMSO-d ₆	გ (TMS)¤ O ppm		
Comp.	6-Me	H - 6	CH ₂ -7,8	H - 3	сн ₃	СН ₂ О	NH(HCl)	
3a	1.14d	4.74m	1.7-2.2m 2.4-2.8m	9.3ls	1.32t	4.27q	10.30 13.30	
4a*	1.25d	4.85m	1.95m 2.35m	8.55s	1.35t	4 • 25q		
<u>3</u> b	1.15d	4.72m	1.6-2.2m 2.4-2.9m	9.42s			5.85	
4 b	1.12d	4.61m	1.6-2.lm 2.2-2.5m	8.57s			9.70	
ãс	1.10d	4.82m	1.7-2.3m 2.6-2.8m	9.10s			7.87 8.42	
4 c	1.14d	4.70m	1.7-2.2m 2.3-2.8m	8,59s			9.52	

^{*} in CDCl₃

13C NMR Chemical shifts				JEOL FX-100			!	solveni	o-d ₆		
Comp.	C-2	C-3	C-4	C-5	C -6	C-7	C-8	C-8a	C-8b	Me	R
3 a	164.8	136.9	111.5	152.3	45 .4	25.5	16.3	88.9	127.0	16.1	14.1 61.4 161.6
4a¥	156.4	138.1	104.3	154.9	44.8	26 •2	16.9	81.8	124.9	16.4	14.3 60.9 162.6
∑ b	164.3	141.3	95.6	151.7	46.1	25.2	16.4	91.0	126.1	16.2	112.1
<u>4</u> b	152.8+	141.0	87.7	154.0 ⁺	45.0	25.1	16.3	83.9	123.4	16.0	114.5
<u>4</u> c	154.2 ⁺	136.8	104.8	157.8+	44.7	25 .4	16.2	82.1	124.5	16.0	162.8

^{*} in CDCl_{χ}; + tentative assignment

We have investigated some nucleophilic reactions of the new tricyclic salts (3)

but in most cases only anion exchange (SCN⁻, N₃⁻, I⁻) or the liberation of the free bases (4) (CN⁻, OCN⁻) have been observed. With HSO₃⁻ anion, however, Michael addition on the C-3 and C-4 double bond took place resulting in a fairly stable betaines $(5+5')^{11}$.

The adducts are in all cases 1:1 mixtures of the <u>cis</u> ($\underline{5}$ ') and <u>trans</u> ($\underline{5}$) isomers. As both isomers have the SO_3^- group in pseudoaxial position owing to the peri effect of the neighbouring iminium group, the position of the R group is different. This is supported by the multiplicity and coupling constant of the H-3 and H-4 protons (${}^3\underline{2}_{3,4}\approx 1.0$ Hz). The isomeric ratio can be determined by the intensity of the H-3 signals.

Recently we have described¹² a similar sensitivity towards nucleophiles in the case of the 2,3a,6a-triazaphenalenium salts where the site of the nucleophilic attack was the same carbon atom of the pyrimidine moiety as with compounds 3.

REFERENCES AND NOTES

- Part 56: I. Bitter, B. Pete, G. Tóth, I. Hermecz, and Z. Mészáros, to be published.
- 2. I. Hermecz and Z. Mészáros, Adv. Heterocyclic Chem., 1983, 33, 241.
- 3. I. Bitter, B. Pete, I. Hermecz, G. Tóth, K. Simon, M. Czugler, and Z. Mészáros, Tetrahedron Lett., 1982, 23, 2891.
- 4. (a) I. Hermecz, T. Breining, Z. Mészáros, G. Tóth, and I. Bitter, Heterocycles, 1980, 14, 1953.
 - (b) Z. Mészáros, J. Knoll, P. Szentmiklósi, Á. Dávid, G. Horváth, and I. Hermecz, Arzneim. Forsch., 1972, 21, 815.
- 5. (a) I. Hermecz, T. Breining, Z. Mészáros, J. Kökösi, L. Mészáros, F. Dessy, and C. DeVos, J. Med. Chem., 1983, 26, 1126.
 - (b) I. Hermecz, T. Breining, L. Vasvári-Debreczy, Á. Horváth, Z. Mészáros, I.

- Bitter, C. DeVos, and L. Rodriguez, J. Med. Chem., 1983, 26, 1494.
- (c) T. Breining, I. Hermecz, B. Podányi, and J. Sessi, <u>J. Heterocyclic Chem.</u>, in press.
- (d) T. Breining, I. Hermecz, B. Podányi, Z. Mészáros, and G. Tóth, <u>J. Chem.</u> Soc., <u>Perkin Trans. 1</u>, in press.
- 6. I. Bitter, G. Tóth, I. Hermecz, and Z. Mészáros, to be published.
- 7. Only compound $\underline{2}$ c could be isolated in pure form owing to its very poor solubility in acetone. Mp 190-192 $^{\rm O}$ C, $^{\rm l}$ H NMR (DMSO-d $_{\rm 6}$): Me 1.33d, H-6 4.56m, H-9 5.1-5.3m; H-2 8.63s; NH $_{\rm 2}$ 7.80 and 8.40 ppm broad.
- 8. 3a: Yield 71%, mp 210 °C; 3b: Yield 57%, mp 244-245 °C; 3c: Yield: 75%, mp 243-245 °C; 3d: Yield 69%, mp 203-204 °C.
- 9. Reaction was carried out in methanol with a slight excess of triethylamine. $\underline{4}$ a: mp 144-145 °C (EtOH); $\underline{4}$ b: mp 166-168 °C (EtOH); $\underline{4}$ c: mp 203-205 °C (EtOH).
- 10.G. Tóth, I. Hermecz, and Z. Mészáros, J. Heterocyclic Chem., 1979, 16, 1181.
- 11. To the yellow suspension of $\underline{3}$ in water excess of solid NaHSO $_3$ was added at 25 °C and stirred while the mixture became white. The precipitated crystals were filtered off, and washed with water. $\underline{5}a$ and $\underline{5}a'$: mp 196-198 °C; characteristic NMR data (DMSO-d $_6$): H-3 5.67d (3 J=1.0Hz) and 5.71d (3 J=1.2Hz); C-3 66.5 (1 J=157.0Hz) and 66.7 (1 J=157.0Hz); C-4 48.2 (1 J=141.6Hz) and 48.9 (1 J=141.6Hz). $\underline{5}b$ and $\underline{5}b'$: mp 250 °C; in solution it decomposed to $\underline{4}b$, $\underline{5}c$ and $\underline{5}c'$: mp 198-200 °C; H-3 5.44d (3 J=1.0Hz) and 5.48d (3 J=1.0Hz). $\underline{5}d$ and $\underline{5}d'$: mp 250 °C; H-3 5.24d (3 J=1.0Hz), and 5.30d (3 J=1.0Hz).
- 12.(a) I. Bitter, B. Pete, I. Hermecz, K. Simon, G. Tóth, and Z. Mészáros, Heterocycles, 1983, 20, 579.
 - (b) I. Bitter, B. Pete, G. Tóth, I. Hermecz, K. Simon, G. Náray-Szabó, and Z. Mészáros, <u>Heterocycles</u>, 1983, <u>20</u>, 1891.

Received, 30th April, 1985