PALLADIUM-CATALYZED COUPLING REACTION OF CHLOROPYRAZINES WITH INDOLE

Yasuo Akita, Akira Inoue, Keiko Yamamoto, and Akihiro Ohta* Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan Teruo Kurihara and Mitsuru Shimizu Faculty of Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-02, Japan

<u>Abstract</u> — The palladium-catalyzed cross-coupling reaction of 2-chloropyrazines with indole was shown to proceed in moderate to good yields, giving 2-(pyrazin-2-yl)indoles. The structure determination of the products was made on the basis of the X-Ray diffraction and ¹³C-NMR spectroscopic analyses.

The palladium-catalyzed coupling reactions of indoles have been extensively investigated in recent years¹. Among these reactions, allylation² prompted us to pay attention to the synthesis of the <u>Cypridina</u> luciferin³. Recently, we reported the simple procedures for the introduction of the cyano⁴, alkenyl and alkynyl⁵, and methyl⁶ groups into the pyrazine ring by the aid of the palladium catalysts. Our attempt was to couple chloropyrazines with indole to prepare 3-(pyrazin-2-yl)-indoles, which constitute the carbon skeleton of the <u>Cypridina</u> luciferin, isolated from Cypridina hilgendorfii³.

When a mixture of 2-chloro-3,6-diisobutylpyrazine (ld), indole, potassium acetate and tetrakis(triphenylphosphine)palladium in N,N-dimethylformamide (DMF) was refluxed for 6 h, the coupling product (2d) was obtained in 25% yield. By replacing the solvent by N,N-dimethylacetamide (DMA) and by elongating the reaction time to 12 h, the yield became to 49%. Thus, some other 2-chloro-3,6dialkylpyrazines (la-c) were submitted to the reaction under the same conditions and the results are shown in Table 1. On the other hand, the reaction of 2-chlorodiphenylpyrazines with indole was achieved successfully, by replacing the catalyst with a combination of bis(triphenylphosphine)palladium dichloride and copper(I) iodide, and the base with potassium carbonate, as shown in Table 1.

Table 1. Reaction of 2-Chloropyrazines with Indole

Scheme 1. Reaction of 2- and 3-Methylindoles with 2-Chloro-3,6-diisobuty1pyrazine (1d)

Although the compound (1d) reacted successfully with 3-methylindole under the same conditions as the reaction of 1d with indole, to give a coupling product (3d) in 57% yield, the reaction with 2-methylindole failed. These results might suggest that the coupling occurred at the C-2 of indole. In the 13 C-NMR spectrum of 2a,

5 4 9 3

prepared by the coupling reaction of la with indole, the signal of the C-2 of the indole part appeared in the same region as the one of 2-phenylindole^{7,8}. These results suggested also the occurrence of the reaction at the C-2 of indole.

Table 2. ¹³C-Chemical Shifts (CDCl₃/TMS, ppm) of Indole Derivatives and 2a

			7 ⁸ H	
Position	Indole ⁷	2-Phenylindole ⁸	3-Phenylindole ⁸	2 a
2	125.2	137.4	121.3	134.0
3	102.6	98.5	117.5	104.8
4	121.3	119.7	119.2	121.5
5	122.3	121.2	121.8	123.7
6	120.3	119.1	119.8	120,0
7	111,8	110.9	111.1	111.0
8	136.1	136.8		136.0
9	128.8	128.2	125.1	129.2

The definitive structure determination of 2a was performed by the X-Ray diffraction analysis. The crystal data of 2a were as follows: $C_{14}H_{13}N_3$, orthorhombic with the space group P_{bnb} , a = 12.862 (1) Å, b = 19.692 (6) Å, c = 9.184 (1) Å, u = 2326.02 Å³, z = 8, D_x = 1.275 g/cm³. A total of 1566 independent reflections (2°<20<135°) was collected with the Rigaku AFC-5 automatic diffractometer, using graphite-monochromated MoK_a radiation. The final R value was 0.078. The molecular framework was illustrated in Scheme 2.

Consequently, the coupling reaction of 2-chloropyrazines occurred at the C-2 of indole, contrary to our expectations. Extension of our new observations and detailed studies are now in progress.

EXPERIMENTAL

All melting and boiling points are uncorrected. The following instruments were used for obtaining the spectral data: 1 H-NMR: Varian EM-360; 13 C-NMR: JEOL FX-100; UV spectra: Hitachi Model 557; MS: Hitachi M-80 spectrometer.

<u>General Procedure for the Reaction of 2-Chloro-3,6-dialkylpyrazines with Indole</u> --- After a mixture of a substrate (2 mmol), indole (280 mg, 2.4 mmol), KOAc (294 mg, 3 mmol), and tetrakis(triphenylphosphine)palladium (116 mg, 0.1 mmol) in DMA (5 ml) was refluxed for 12 h under an argon stream, the solvent was removed by distillation in vacuo. The residue was triturated with water (10 ml) and extracted with CH_2Cl_2 to give a brown solid or oil, which was purified by column chromatography on silica gel (Wakogel C-200, 10 g) eluting with hexane containing an increasing amount of AcOEt.

General Procedure for the Reaction of 2-Chloro-diphenylpyrazines with Indole ---A mixture of a 2-chloro-diphenylpyrazine (266 mg, 1 mmol), indole (176 mg, 1.5 mmol), bis(triphenylphosphine)palladium dichloride (7 mg, 0.01 mmol), and CuI (10 mg, 0.05 mmol) in DMA (5 ml) was refluxed for 12 h under an argon atmosphere. The same work-up as before gave a brown solid, which was chromatographed on silica gel (Wakogel C-200, 10 g) with hexane containing an increasing amount of benzene. 2-(3,6-Dimethylpyrazin-2-yl)indole (2a): pale yellow needles (from hexane); mp 133-136°C; MS: m/e 223 (M⁺); UV: $\lambda_{max}^{\text{EtOH}}$ 239.5 (log ε = 4.29), 305 (4.14), 348 (4.41) nm; ¹H-NMR (CDCl₃/TMS): δ 2.57 (s, 3H, CH₃), 2.85 (s, 3H, CH₃), 7.10-7.73 (m, 4H, indole H), 7.73-8.00 (m, 1H, indole H), 8.38 (s, 1H, pyrazine H), 10.05 (broad s, 1H, NH) ppm; ¹³C-NMR (CDCl₃/TMS): δ 21.0 (CH₃), 23.9 (CH₃), 104.8 (indole C-3), 111.0 (indole C-7), 120.0 (indole C-6), 121.5 (indole C-4), 123.7 (indole C-5), 129.2 (indole C-9), 134.0 (indole C-2), 136.0 (indole C-8), 140.6 (pyrazine C), 143.2 (pyrazine C), 148.3 (pyrazine C), 149.6 (pyrazine C) ppm; <u>Anal</u>. Calcd. for $C_{14}H_{13}N_3$: C, 75.13; H, 5.87; N, 18.82. Found: C, 75.07; H, 5.92; N, 18.61. 2-(3,6-Diethylpyrazin-2-yl)indole (2b): pale yellow needles (from MeOH); mp 89-90°C; MS: m/e 251 (M⁺); UV: λ_{max}^{EtOH} 236.5 (log ε = 4.22), 241 (4.21, shoulder), 311-313 (4.10), 346.5 (4.31) nm; ¹H-NMR (CDCl₃/TMS): δ 1.48 (t, J = 7 Hz, 3H, CH₂CH₃), 1.55 (t, J = 7 Hz, 3H, CH₂CH₃), 3.00 (q, J = 7 Hz, 2H, CH₂CH₃), 3.37 (q, J = 7 Hz, 2H, CH₂CH₃), 7.15-7.83 (m, 4H, indole H), 7.83-8.08 (m, 1H, indole H), 8.55 (s, 1H, pyrazine H), 10.08 (broad s, 1H, NH) ppm; <u>Anal</u>. Calcd. for C₁₆H₁₇N₃: C, 76.46; H, 6.82; N, 16.72. Found: C, 76.67; H, 6.78; N, 16.61.

2-(3,6-Diisopropylpyrazin-2-yl)indole (2c): colorless prisms (from hexane or MeOH- H_2O); mp 98-100°C; MS: m/e 279 (M⁺); UV: λ_{max}^{EtOH} 234.5 (log ε = 4.25), 242 (4.20), 252 (3.86, shoulder), 306 (4.11, shoulder), 345 (4.29) nm; ¹H-NMR (CDCl₃/TMS): δ 1.36 (d, J = 7 Hz, 6H, CH(CH₃)₂), 1.40 (d, J = 7 Hz, 6H, CH(CH₃)₂), 3.11 (m, J = 7 Hz, 1H, CH(CH₃)₂), 3.85 (m, J = 7 Hz, 1H, CH(CH₃)₂), 6.83-7.78 (m, 5H, indole H), 8.28 (s, 1H, pyrazine H), 9.65 (broad s, 1H, NH) ppm; <u>Anal</u>: Calcd. for C₁₈H₂₁N₃: C, 77.38; H, 7.58; N, 15.04. Found: C, 77.14; H, 7.61; N, 14.89.

2-(3,6-Diisobutylpyrazin-2-y1)indole (2d): colorless prisms (from MeOH-H₂O); mp 82-83°C; MS: m/e 307 (M⁺); UV: λ_{max}^{EtOH} 236.5 (log $\varepsilon = 4.32$), 282 (4.31, shoulder), 311 (4.23), 348 (4.42) nm; ¹H-NMR (CDCl₃/TMS): δ 1.00 (d, J = 7 Hz, 6H, CH₂CH(CH₃)₂), 1.03 (d, J = 7 Hz, 6H, CH₂CH(CH₃)₂), 2.33 (m, 2H, 2 x CH₂CH(CH₃)₂), 2.68 (d, J = 7 Hz, 2H, CH₂CH(CH₃)₂), 3.08 (d, J = 7 Hz, 2H, CH₂CH(CH₃)₂), 7.00-7.87 (m, 5H, indole H), 8.27 (s, 1H, pyrazine H), 9.87 (broad s, 1H, NH) ppm; <u>Anal</u>. Calcd. for C₂₀H₂₅N₃: C, 78.13; H, 8.20; N, 13.67. Found: C, 78.30; H, 8.23; N, 13.88. 2-(3,6-Diphenylpyrazin-2-y1)indole (2e): colorless prisms (from EtOH); mp 150-153°C; MS: m/e 347 (M⁺); UV: λ_{max}^{EtOH} 261-263 (log $\varepsilon = 4.39$), 312 (4.29), 353-355 (4.04) nm; ¹H-NMR (CDCl₃/TMS): δ 6.63 (d, J = 4 Hz, 1H, indole H), 7.00-7.93 (m, 13H, benzene and indole H), 8.07-8.33 (m, 2H, benzene H), 9.17 (s, 1H, pyrazine H) ppm; <u>Anal</u>. Calcd. for C₂₄H₁₇N₃: C, 82.97; H, 4.93; N, 12.10. Found: C, 82.70; H, 4.88; N, 12.12.

2-(3,5-Diphenylpyrazin-2-yl)indole (2f): colorless prisms (from MeOH); mp 119-123°C; MS: m/e 347 (M⁺); UV: λ_{max}^{EtOH} 242.5-245 (log ε = 4.14), 267 (4.06, shoulder), 279 (4.00, shoulder), 309-312 (3.98), 353 (3.87) nm; ¹H-NMR (CDCl₃/TMS): & 6.60 (d, J = 4 Hz, 1H, indole H), 7.00-7.83 (m, 13H, benzene and indole H), 8.13-8.43 (m, 2H, benzene H), 9.03 (s, 1H, pyrazine H) ppm; <u>Anal</u>. Calcd. for C₂₄H₁₇N₃: C, 82.97; H, 4.93; N, 12.10. Found: C, 83.00; H, 4.89; N, 12.20.

2-(5,6-Diphenylpyrazin-2-yl)indole (2g): pale yellow prisms (from MeOH); mp 149-150°C; MS: m/e 347 (M⁺); UV: λ_{max}^{EtOH} 267-271 (log ε = 4.23), 307-311 (4.25), 349 (4.18) nm; ¹H-NMR (CDCl₃/TMS): δ 6.82 (d, J = 4 Hz, 1H, indole H), 7.20-7.87 (m, 13H, benzene and indole H), 7.90 (d, J = 4 Hz, 1H, indole H), 8.30-8.60 (m, 1H, indole H), 8.97 (s, 1H, pyrazine H) ppm; <u>Anal</u>. Calcd. for C₂₄H₁₇N₃: C, 82.97; H, 4.93; N, 12.10. Found: C, 82.77; H, 4.87; N, 12.10. 2-(3,6-Diisobutylpyrazin-2-yl)-3-methylindole (3d): yellowish viscous oil; bp 170-175°C/0.05 torr; MS: m/e 321 (M⁺); UV: λ_{max}^{EtOH} 275 (log ε = 3.97, shoulder), 295 (3.99), 338.5 (3.72) nm; ¹H-NMR (CDCl₃/TMS): δ 0.72 (d, J = 6 Hz, 6H, CH₂CH(CH₃)₂), 0.92 (d, J = 6 Hz, 6H, CH₂CH(CH₃)₂), 1.58-2.17 (m, 2H, 2 x CH₂CH(CH₃)₂), 2.24 (s, 3H, CH₃), 2.65 (d, J = 7 Hz, 2H, CH₂CH(CH₃)₂), 2.78 (d, J = 7 Hz, 2H, CH₂CH(CH₃)₂), 6.87-7.33 (m, 3H, indole H), 7.37-7.70 (m, 1H, indole H), 8.30 (s, 1H, pyrazine H), 8.63-8.83 (broad s, 1H, NH) ppm; <u>Anal</u>. Calcd. for C₂₁H₂₇N₃: C, 78.46; H, 8.47; N, 13.07. Found: C, 78.18; H, 8.41; N, 12.98.

REFERENCES AND NOTES

- 1. Y. Murakami, Y. Yokoyama, and A. Aoki, <u>Heterocycles</u>, 1984, 22, 1493, and references are cited therein.
- 2. W. E. Billups, R. S. Erkes, and L. E. Reed, Synth. Commun., 1980, 10, 147.
- Y. Kishi, T. Goto, Y. Hirata, O. Shimomura, and F. H. Johnson, <u>Tetrahedron Lett.</u>, 1966, 3427.
- 4. Y. Akita, M. Shimazaki, and A. Ohta, Synthesis, 1981, 974.
- 5. Y. Akita and A. Ohta, <u>Heterocycles</u>, 1982, 19, 329.
- 6. A. Ohta, A. Inoue, K. Ohtsuka, and T. Watanabe, <u>Heterocycles</u>, 1985, 23, 133.
- S. P. Singh, S. S. Parmer, V. I. Sternberg, and S. A. Farnum, J. <u>Heterocyclic Chem.</u>, 1978, 15, 13.
- T. L. Giechrist, C. W. Rees, and C. Thomas, <u>J. Chem. Soc., Perkin Trans</u>. I, 1975, 8.
- 9. R. A. Baxter and F. S. Spring, J. Chem. Soc., 1947, 1179.
- 10. H. Gainer, M. Kokorudz, and W. K. Langdon, <u>J. Org. Chem</u>., 1961, <u>26</u>, 2360.
- A. Ohta, S. Masano, M. Tsutsui, E. Yamamoto, S. Suzuki, H. Makita,
 H. Tamamura, and Y. Akita, <u>J. Heterocyclic Chem</u>., 1981, 18, 555.
- 12. A. Ohta, Chem. Pharm. Bull., 1968, 16, 1160.

A. Ohta, Y. Akita, and Y. Nakane, <u>Chem. Pharm. Bull</u>., 1979, 27, 2980.
 P. J. Lont and H. C. van der Plas, <u>Recl. Trav. Chim</u>., 1973, 92, 449.
 G. Karmas and P. E. Spoerri, <u>J. Am. Chem. Soc</u>., 1952, 74, 1580.

Received, 15th May, 1985