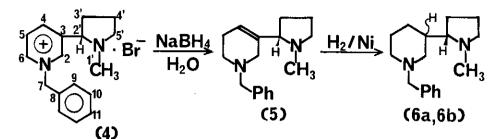

THE SYNTHESIS OF 2'S, 3R- AND 2'S, 3S-HEXAHYDRONICOTINE

Makoto Shibagaki, Hajime Matsushita, and Hajime Kaneko Central Research Institute, Japan Tobacco INC., 6-2 Umegaoka, Midori-ku, Yokohama, Kanagawa 227, Japan


<u>Abstract</u> - The reduction of 1-benzylnicotinium bromide($\frac{4}{2}$) with NaBH₄ led to 1-benzyl-1,2,5,6-tetrahydronicotine($\frac{5}{2}$), and the catalytic reduction of $\frac{5}{2}$ over Raney nickel gave 2'S,3Rand 2'S,3S-1-benzylhexahydronicotine($\frac{6}{2}$, $\frac{6}{2}$) in the ratio of 4 : 1 at room temperature. The debenzylations of $\frac{6}{2}$ and $\frac{6}{2}$ were carried out by the catalytic reduction over palladium on charcoal to give 2'S,3R- and 2'S,3S-hexahydronicotine($\frac{2}{2}$, $\frac{2}{2}$), respectively. The configurations of $\frac{2}{2}$ and $\frac{2}{2}$ were determined by NMR spectra.

In the study of the biological activities of compounds structurally related to nicotine($\frac{1}{2}$), hexahydronicotine($\frac{2}{2}$) is one of the interesting compounds. $\frac{2}{2}$ was first obtained by the reduction of $\frac{1}{2}$ with sodium in ethanol.¹ The catalytic reduction of $\frac{1}{2}$ over platinum or nickel has also been reported.² However, these

reductions required rather drastic conditions, and the products were always accompanied by a fair amount of octahydronicotine(3). Furthermore, the separation of the two diastereomers of 2 has not been reported.

In this paper we wish to report a new synthetic method for 2^{2} , 3R and 2^{2} , 3S-hexahydronicotine. The determination of the configurations of these

diastereomers will also be reported.

The reduction of 1-benzylnicotinium bromide($\frac{4}{2}$)³ <u>H2/Pd-C</u> 2a & 2b with sodium borohydride afforded 1-benzyl-1,2,5,6tetrahydronicotine($\frac{5}{2}$) in an 80% yield. The catalytic reduction of $\frac{5}{2}$ over Raney nickel gave 1-benzylhexahydronicotine as a mixture of two diastereomers($\frac{6}{2}$ and

6b). Although the separation of the debenzylated products(2a and 2b) was unsuccessful, that of 6a and 6b was carried out efficiently by a reversed phase column chromatography (ODS). Thus, 6a and 6b were obtained from the reaction mixture in 72% and 23% yields, respectively. The debenzylations of 6a and 6b were carried out by the catalytic reduction over 5% palladium on charcoal, and the yields of 2a and 2b were 95% and 90%, respectively.

Relative configurations of 2g and 2b were confirmed by ¹³C NMR analysis. The assignments of individual resonances in 2g, 2b, 5, 6g, and 6b shown in Table 1 and Table 2 were estimated by two dimentional shift correlated spectroscopy (COSY) and two dimentional heteronuclear correlated spectroscopy Table 1 ¹³C NMR chemical shifts (ppm from TMS)

	2 <u>e</u>	2b	éa	ĕp	5
1´	41.4	41.5	41.3	41.4	40.4
2´	69.4	68.7	69.2	68.7	71.9
3′	27.3	27.0	26.7	26.4	30.3
4΄	22.5	22.8	22.4	22.7	22.3
51	57.8	57.6	57.7	57.6	56.7
2	47.4	51.2	55.2	58.7	52.0
3	39.1	39.6	37.9	38.3	136.6
4	2 9. 5	25.1	28.8	24.4	121.7
5	26.6	26.4	25.8	25,6	25.8
6	47.4	47.5	53.9	54.8	49.5
7	-	-	63.7	64.0	62.6
8	-	-	138.7	138.9	138.5
9	-	-	128.0	128.3	128.1
10	-	-	129.0	129,4	129.1
11	-	-	126.7	127.0	126.8

analysis.

The most remarkable difference in the chemical shifts between 2g and 2b was recognized at 2- and 4-carbon. This fact was presumed to be caused Ьу the difference of the steric effect of pyrrolidine ring on these two carbons. If the cyclopentane ring is attached to 3-position in piperidine ring, the γ -effect on 2- and 4-carbon must be equal. The substituent chemical shift (SCS) was applied to 3-methylpiperidine $(7)^4$ to estimate the difference of the τ -effect. Three kinds of the chemical shifts of 2- and 4-carbon were calculated by the use of the additive parameters⁵ of the saturated carbon and the amino substituents at the methyl group in 7, which were listed in Table 3. As shown in Table 3, the chemical shifts of 2-carbon in 2a and 2b were close to the calculated ones estimated by the two amino and the two methyl substituents, respectively. Similarly, those of 4-carbon in 2a and 2b were close to the calculated ones estimated by the two methyl and the two amino substituents, respectively. These results suggested that 1'-nitrogen had

Table 2	¹ H NMR	chemical	shifts
---------	--------------------	----------	--------

(ppm from TMS)

	2ª	2p	ća	ĕĎ	5
1	2.29	2.28	2.28	2.26	2.20
2′	1.98	1.99	2.02	1.98	2.48
3′	1.59	1.59	1.61	1.57	1.67
	1.71	1.70	1.70	1.67	1.83
4´	1.65	1.66	1.64	1.63	1.67
	1.67	1.67	1.66	1.68	1.67
5′	2.11	2.11	2.10	2.10	2.07
	3.02	3.04	3.01	3.02	3.06
2	2.38	2.38	1.81	1.77	2.92
	3.04	2.99	2.94	2.80	3.03
3	1.72	1.68	1.88	1.84	-
4	1.15	1.15	1.02	1.00	5.65
	1.68	1.78	1.64	1.70	-
5	1.47	1.47	1.55	1.53	2.13
	1.68	1.70	1.69	1.66	2.13
6	2.50	2.52	1.80	1.83	2.42
	3.01	3.03	2.79	2.84	2.57
7	-	-	3.37	3.45	3,52
	-	-	3.63	3.50	3.62
9	-	-	7.29	7.30	7.34
10	-	-	7.28	7.29	7.28
11	-	-	7.20	7.23	7.22

stronger steric effects on 2-carbon than 4-carbon in 22 and on 4-carbon than 2-carbon in 25.

These estimations were supported by 1 H NMR analysis. As shown in Table 2, the chemical shifts of equatorial protons on 2-carbon in 2a and 6a were shifted to

lower field in comparison with those in 2b and 6b, and those on 4-carbon in 2b and 6b were also shifted to lower field. These facts were presumed to be caused by the deshielding effect of the lone pair of 1'-nitrogen. If the bond of 2'- and 3-carbons rotated rapidly, the difference of the chemical shifts of 2- and 4-carbon between 2a and 2Ь should disappear. The pyrrolidine and piperidine rings in both 2a and 2b, as well as

able 3 ¹³ C NMR	chemical	shifts
----------------------------	----------	--------

	7	cal. ²⁾	cal. ³⁾	cal. ⁴⁾	2a ≈≈	žÞ
2	56.0	51.0	48.4	45.8	47.4	51.2
4	35.0	30.0	27,4	24.8	29.5	25.1

(ppm from TMS)¹⁾

7 -effects of methyl and amino group are
 -2.5 and -5.1 ppm, respectively.
2) estimated by two methyl groups.
3) estimated by a methyl and an amino group
4) estimated by two amino groups.

nicotine,⁶ can be regarded to have the fixed conformation, in which 2- and 4-carbon were close to 1'-nitrogen and 3'-carbon in 2a, respectively. Similarly, 2- and 4-carbon were close to 3'-carbon and 1'-nitrogen in 2b, respectively. This observation was supported by the coupling constant of 13.2Hz between the 2'- and 3-proton in both 2a and 2b and the dihedral angle was assumed to be approximately 0° or 180°. Thus, four probable conformations for 2a and 2b were proposed as shown in Figure 1. It is apparent that the conformation of A and C have smaller steric repulsions between the pyrrolidine and piperidine ring than B and D. From above mentioned discussion, we conclude

Т

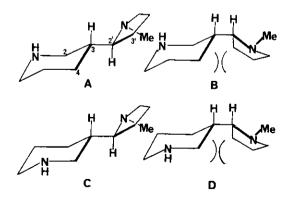
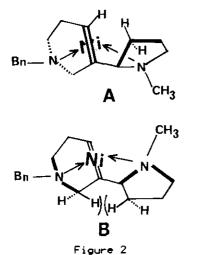



Figure 1

that the configuration of 2a is A and that of 2b is C, that is, 2a is 2'S,3Rhexahydronicotine and 2b is 2'S,3S-hexahydronicotine, because 1'nitrogen is close to 2carbon in 2a and to 4-carbon in 2b.

This conclusion was su-

pported by the selectivity in the catalytic reduction of 5 over Raney nickel. In this reduction, we assumed that two nitrogens in 5 coordinated to nickel and that hydrogen attacked the unsaturated carbons from the same side of the coordinated nickel. As a result, two possible conformations of the transition states were considered. As shown in Figure 2, the steric repulsion between 2- and 3'-protons in B is larger than that between 4 and 3'-protons in A. Therefore, the reduction

proceeds through the conformation A predominantly, and 2'S,3R-hexahydronicotine is given as the major product.

EXPERIMENTAL

<u>1-Benzyl-1,2,5,6-tetrahydronicotine(5)</u> --- To a stirring solution of 1-benzylnicotinium bromide(4) (6.7g, 20mmol) in 80ml of water was added slowly 3.8g of NaBH₄ (100mmol) at room temperature. After 1h, 15ml of 6N HCl was added, and the resulting mixture was made basic(pH)11) with NaOH, and extracted with ether. The extract was dried over Na₂SO₄, and concentrated <u>in</u> <u>vacuo</u> to give 1-benzyl-1,2,5,6-tetrahydronicotine(5) (4.1g, 80%) after distillation (153°C, 2mmHg). MASS(m/e); 256(M+; 76), 91(100), 199(89), 212(89), 255(89); $\mathbb{E} \propto 1\frac{25}{D}$ -52.9° (c=0.31 MeOH).

<u>2'S,3R- and 2'S,3S-1-Benzylhexahydronicotine(6a</u> and 6b) --- To a suspension of 0.8g of Raney nickel(R-4) in 60ml of methanol was added 1-benzyl-1,2,5,6tetrahydronicotine(5) (4.1g, 16mmol). The reaction mixture was stirred under hydrogen at room temperature and atmospheric pressure. After 10h, nickel was filtered off, and the filtrate was concentrated <u>in vacuo</u> to give a mixture of 2'S,3R- and 2'S,3S-1-benzylhexahydronicotine(6a and 6b). These diastereomers were separated by a reversed phase column chromatography (ODS; 22mm ϕ x 50cm; MeOH : H₂O = 3 : 1), and 2.8g(72%) of 6a and 0.9g(23%) of 6b were obtained. MASS(m/e); (<u>6</u>g): 258(M+; 16), 84(100), 91(26), 167(9), 186(26); (<u>6</u>b): 258(M+; 11), 84(100), 91(27), 167(11), 186(16).

2'S.3R-hexahydronicotine(2a) --- To a solution of 2'S,3R-1-benzylhexahydronicotine($\underline{6a}$) (2.8g, 11mmol) in 10ml of ether was passed HCl gas. The resulting HCl salt of $\underline{6a}$ was filtered, and was added to a suspension of 5% Pd-C (0.2g) in 45ml of methanol. The reaction mixture was stirred under hydrogen at room temperature and atmospheric pressure. After 4h, Pd-C was filtered off, and the filtrate was concentrated in vacuo. The resulting oil was dissolved in water, made basic(pH>11) with NaOH, and extracted with ether. The extract was dried over Na₂SO₄, concentrated in vacuo, and the resulting crystals were recrystallized by petroleum ether at -10°C to give 2'S,3R-hexahydronicotine-(2a) (1.8g, 95%) as white crystals; mp 41-42°C. MASS(m/e); 168(M+; 6), 84(100), 96(5), 110(3); [α] 2^{25} -51.2 (c=0.3, MeOH).

 $\frac{2'S.3S-hexahydronicotine}{2b} = -- The debenzylation of 2'S.3S-1-benzylhexa-hydronicotine(6b) (0.9g, 3.5mmol) proceeded in a similar manner mentioned above to give 2'S.3S-hexahydronicotine(2b) (0.5g, 90%) as a colorless oil.$ $MASS(m/e); 168(M+; 4), 84(100), 96(4), 110(4): <math>[\alpha]_D^{25} = -37.1^\circ$ (c=0.05, MeOH).

REFERENCES

- 1) Liebrecht, Chem. Ber., 1885, 18, 2969; 1886, 19, 2587.
- W. Windus and C. S. Marvel, <u>J. Am. Chem. Soc.</u>, 1930, <u>52</u>, 2543; E. C. Britton and L. H. Horsley, U. S. Patent, 2,834,784, 1958.
- M. Shibagaki, H. Matsushita, S. Shibata, A. Saito, Y. Tsujino, and H. Kaneko, <u>Heterocycles</u>, 1982, <u>19</u>, 1641.
- 4) H. Booth and D. V. Griffiths, <u>J. Chem. Soc.</u>, Perkin II, 1973,842.
- 5) P. C. S. Simon, 'Strukturaufklarung organischer Verbindungen', Springer-Verlag, Berlin, Heidelberg, New York, 1981, P. c10-c70.
- T. P. Pitner, J. F. Whidby, and W. B. Edwards III, <u>J. Am. Chem. Soc.</u>, 1980, 102, 5149.

Received, 29th May, 1985