NEW METHODS AND REAGENTS IN ORGANIC SYNTHESIS. 54.⁺,¹
LITHIUM TRIMETHYLSILYLDIAZOMETHANE: A NEW SYNTHON FOR THE PREPARATION
OF 1-SUBSTITUTED 5-ALKYLTHIO-1,2,3-TRIAZOLES FROM ISOTHIOCYANATES

Toyohiko Aoyama*, Mototsugu Kabeya, and Takayuki Shioiri*

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

Abstract — Lithium trimethylsilyldiazomethane (1) reacts smoothly with isothiocyanates in tetrahydrofuran to give 1-substituted 4-trimethylsilyl-5-alkylthio-1,2,3-triazoles (2) after quenching with alkyl halides. Desilylation of 2 is easily achieved with 10% aqueous potassium hydroxide in methanol to afford 1-substituted 5-alkylthio-1,2,3-triazoles (3).

In the preceding communication, 1 we have reported that the lithium salt of trimethylsilyldiazomethane (TMSCHN2, (CH3)3SiCHN2) reacts with isothiocyanates in diethyl ether to give 2-amino-1,3,4-thiadiazoles in good yields. During the course of our studies on this reaction, a dramatic solvent effect leading to the formation of 1,2,3-triazoles was observed in the use of tetrahydrofuran in place of diethyl ether as solvent.

We have found that treatment of isothiocyanates with lithium trimethylsilyldiazomethane (1), prepared from TMSCHN₂ and n-butyllithium, followed by quenching with alkyl halides in tetrahydrofuran gives 1-substituted 4-trimethylsilyl-5-alkylthio-1,2,3-triazoles (2) in excellent yields. In

$$R^{1}-N=C=S \xrightarrow{1) (CH_{3})_{3}SiC(Li)N_{2}} \xrightarrow{1} R^{1} \underset{N}{\underset{N}{\longrightarrow}} SR^{2} \xrightarrow{OH^{-}} R^{1} \underset{N}{\underset{N}{\longrightarrow}} SR^{2}$$
in THF
$$2 \xrightarrow{2} X$$

$$2 \xrightarrow{2} X$$

$$2 \xrightarrow{3} X$$

t Dedicated to Professor Shun-ichi Yamada on the occasion of his 70th birthday.

this reaction, 2-amino-1,3,4-thiadiazoles obtained in the use of diethyl ether as solvent could not be detected at all. Removal of the trimethylsilyl group of 2 has been easily carried out with 10% aqueous potassium hydroxide in boiling methanol to give 1-substituted 5-alkylthio-1,2,3-triazoles (3) in almost quantitative yields.

The results are summarized in Table. Various isothiocyanates including aromatic and aliphatic ones react with 1 to give 2. Tetrahydrofuran is essential as solvent to conduct the reaction. Desilylation of 2 is easily achieved with 10% aqueous potassium hydroxide in methanol. Tetra-n-butylammonium chloride and potassium fluoride dihydrate in acetonitrile 2 may be also effectively used for desilylation (see run 8 in Table).

Table^a Preparation of 1-Substituted 4-Trimethylsilyl-5-alkylthio-1,2,3-triazoles (2) and 1-Substituted 5-alkylthio-1,2,3-triazoles (3)

Run	R ¹		mp(°C)			mp(°C)
		R ² X	Yield(%) 2∕	or bp(°C) (mmHg)	Yield(%) 3 <u>.</u>	or bp(°C) (mmHg)
	•		(0,005)		(0.01)	
2	Ph-	PhCH ₂ Br	99	58-59 ^c	97	135-145
		_				(0.005)
3	СН ₃ -	CH ₃ I	96	70-80	100	55-60 ^d
	•	·		(0.01)		(0.005)
4	CH ₃ -	PhCH ₂ Br	90	48–49 ^c	98	120-130
	Ū	_				(0.005)
5	CH3(CH2)3-	PhCH ₂ Br	97	125-135	95	125-140
		_		(0.05)		(0.005)
6	\bigcirc	PhCH ₂ Br	98	62–63 ^c	96	76–78 ^c
7	PhCH ₂ -	PhCH ₂ Br	91	90-91 ^e	99	82-83 ^{c, 1}
8	СН ₂ =СНСН ₂ -	PhCH ₂ Br	91	51–53 ^c	83	120-125
		_			(99) ^g	(0.005)

a) Unless otherwise stated, the reaction was carried out as a typical procedure. All compounds gave satisfactory elemental analysis and spectral data. b) Lit., 3 bp $112-114^{\circ}\text{C}/0.005\text{mmHg.}$ c) Recrystallized from diethyl ether-hexane. d) Lit., 3 bp $68-69^{\circ}\text{C}/0.03\text{mmHg.}$ e) Recrystallized from benzene-hexane. f) Lit., 4 mp 82°C. g) Desilylation was carried out using tetra-n-butylammonium chloride and potassium fluoride dihydrate at $60-70^{\circ}\text{C}$ for 3 h in acetonitrile.

Although the great differences in the reactivity of $\frac{1}{2}$ to isothiocyanates caused by the use of diethyl ether and tetrahydrofuran can not be explained at the present time, a probable mechanism of

the formation of 2 may be as follows: Nucleophilic attack of 1 on the carbon atom of the isothio-cyanate group, followed by cyclization will give a 1.2.3-triazole intermediate $\frac{4}{3}$ which is trapped with an alkyl halide to afford $\frac{2}{3}$.

1-Substituted 5-alkylthio-1,2,3-triazoles are generally prepared by the rearrangement of 5-amino-1,2,3-thiadiazoles under basic conditions 5 or the reaction of isothiocyanates with an excess of diazomethane. 3 As compared with these procedures, the method described here provides a novel, simple one-pot and high-yield conversion of isothiocyanates to 5-alkylthio-1,2,3-triazoles. Furthermore, combined with preceding observation, 1 the lithium salt of TMSCHN $_2$ can be efficiently used for the chemoselective preparation of 2-amino-1,3,4-thiadiazoles and 5-alkylthio-1,2,3-triazoles from isothiocyanates.

Typical experimental procedures for each reaction are as follows:

 silica gel column chromatography (Merck Art. 7734, hexane : diethyl ether : ethyl acetate = 6:3: 1) to give 1-substituted 5-alkylthio-1,2,3-triazole (3).

REFERENCES AND NOTES

- 1. For Part 53, see T. Aoyama, M. Kabeya, A. Fukushima, and T. Shioiri, Heterocycles, in press.
- 2. L.A. Carpino and A.C. Sau, J. Chem. Soc. Chem. Commun., 1979, 514.
- 3. S. Hoff and A.P. Blok, Recl. Trav. Chim. Pays-Bas, 1974, 93, 317.
- 4. M. Begtrup, Acta. Chem. Scand., 1972, 26, 1243.
- M. Uher, A. Rybár, A. Martvoň, and J. Leško, Collect. Czech. Chem. Commun., 1976, 41, 1551;
 T. Kindt-Larsen and C. Pedersen, Acta. Chem. Scand., 1962, 16, 1800; M. Regitz and H. Scherer, Chem. Ber., 1969, 102, 417; K.T. Finley, "Triazoles: 1,2,3,", John Wiley & Sons, New York, 1980, Chapter 8.
- 6. S. Mori, I. Sakai, T. Aoyama, and T. Shioiri, Chem. Pharm. Bull., 1982, 30, 3380.

Received, 3rd June, 1985