NOVEL REARRANGEMENT OF 3-ACYL-5-ACYLAMINO-2,3-DIHYDRO-1,3,4-THIADIAZOLE 1-OXIDES INTO 1,3,4-OXADIAZOLES

Seiju Kubota*, Kouhei Toyooka, Naoya Yamamoto, Takayuki Kasai, and Masayuki Shibuya

Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi, Tokushima 770, Japan

<u>Abstract</u> — Thermally, or in the presence of p-toluenesulfonic acid, 3-acyl-5-acylamino-2,3-dihydro-1,3,4-thiadiazole 1-oxides are transformed into 1,3,4-oxadiazoles, carbonyl compounds and sulfur.

In the previous communication, we reported that the oxidation of 3-acety1-5-acetamido-2-pheny1-2,3-dihydro-1,3,4-thiadiazole (1) and the 2-methy1-2-pheny1 derivative (2) with m-chloroperbenzoic acid (m-CPBA) gave single isomers of the S-oxides (3) and (4), respectively. We now report a novel rearrangement of these S-oxides into 1,3,4-oxadiazoles. Previously, we reported that 3-acety1-5-methy1-sulfony1-2-pheny1-2,3-dihydro-1,3,4-thiadiazole 1-oxide (5) was converted into 2-methylsulfony1-5-pheny1-1,3,4-thiadiazole (6) in ethanol in the presence of base at room temperature or by heating in dimethylsulfoxide (DMSO) at 100°C. 2

We examined a similar reaction of 3-acetyl-5-acetamido-2-phenyl-2,3-dihydro-1,3,4-thiadiazole l-oxide (3). Treatment of compound (3) with a base in ethanol gave 2-acetamido-5-phenyl-1,3,4-thiadiazole (7)³ in a 70 % yield (with pyridine) or in a 90 % yield (with triethylamine). However, heating compound (3) in DMSO

at 100°C for 3 h gave 2-acetamido-5-methyl-1,3,4-oxadiazole (8), mp 179-180°C (lit. 4, mp 180-181°C), in 74 % yield along with benzaldehyde, trans-stilbene and sulfur.

This novel rearrangement was also observed when compound (3) was heated in dimethyl-formamide at 100°C for 3 h (77 % yield). Similarly, 5-propionamido-3-propionyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1-oxide (9)⁵ and 5-benzamido-3-benzoyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1-oxide (10),⁶ which were obtained by oxidation of the corresponding 3-acyl-5-acylamino-2-phenyl-2,3-dihydro-1,3,4-thiadiazoles³ with m-CPBA, were also transformed into 2-ethyl-5-propionamido-1,3,4-oxadiazole (11)⁷ in 60 % yield and 5-benzamido-2-phenyl-1,3,4-oxadiazole (12), mp 198-200°C (lit.⁴, 201-202°C), in 78 % yield, respectively, when heated in DMSO at 100°C for 3 h.

Refluxing compound (3) in dioxane for 20 h or in toluene for 1 h in the presence of a catalytic amount of p-toluenesulfonic acid gave the 1,3,4-oxadiazole (8) in 49 % or in 54 % yield, respectively, along with benzaldehyde and sulfur. Heating 3-acetyl-5-acetamido-2-methyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1-oxide (4) in DMSO at 100°C gave many decomposition products, and the expected oxadiazole derivative was not detected. However, refluxing compound (4) in dioxane for 20 h or in toluene for 1 h in the presence of catalytic amount of p-toluenesulfonic acid gave the oxadiazole (8) in 49 % or in 35 % yield, along with acetophenone and sulfur.

3-Acetyl-5-(N-methylacetamido)-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1-oxide (13) 8

which was obtained from 3-acetyl-5-(N-methylacetamido)-2-phenyl-2,3-dihydro-1,3,4-thiadiazole³ by oxidation with m-CPBA did not change at 100°C in DMSO, but was converted into 2-(N-methylacetamido)-5-phenyl-1,3,4-thiadiazole (14), mp 191-193°C (lit.³, 191-192°C), in 40 % yield at 150°C in DMSO for 5 h.

This fact suggests that the presence of an NH proton in acylamino side chain is necessary for this rearrangement. A possible mechanism to explain the formation of the oxadiazole is shown in the following scheme.

The ring expansion reaction which occurs on heating heterocyclic sulfoxides containing β -hydrogen atoms is well documented, $^{9-13}$ and the initial step of these reaction is the thermal ring opening to a sulfenic acid intermediate. In the present reaction, the intermediate sulfenic acid (16) would be produced from the sulfoxide (15) by a prototropic rearrangement or by the initial protonation with p-toluenesulfonic acid. The subsequent intramolecular reaction of 16 affords the oxadiazole (17) and the thermally highly unstable oxathiirane (18) 14,15 which is converted into the corresponding carbonyl compounds and sulfur.

ACKNOWLEDGEMENT

This work was supported in part by a Grant in Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan, which is gratefully acknowledged.

REFERENCES AND NOTES

1. S. Kubota, K. Toyooka, N. Yamamoto, M. Shibuya and M. Kido, J. Chem. Soc., Chem. Commun., 1982, 901.

- S. Kubota, K. Toyooka, J. Ikeda, N. Yamamoto and M. Shibuya, <u>J. Chem. Soc.</u>, <u>Perkin Trans.</u> <u>1</u>, 1983, 967.
- S. Kubota, Y. Ueda, K. Fujikane, K. Toyooka, and M. Shibuya, <u>J. Org. Chem.</u>, 1980, 45, 1473.
- 4. I. Hagedorn and H. D. Winkelmann, Chem. Ber., 1966, 99, 850.
- 5. Compound 9: yield 90 %; mp 149.5-151.0 °C (decomp.). IR (KBr): 1705, 1685 (C=O), 1025 (SO) cm⁻¹. 1 H-NMR (CDCl $_{3}$): δ 1.11 (3H, t, CH $_{2}$ CH $_{3}$), 1.18 (3H, t, CH $_{2}$ CH $_{3}$), 2.36 (2H, q, CH $_{2}$ CH $_{3}$), 2.80 (2H, q, CH $_{2}$ CH $_{3}$), 6.63 (1H, s, C $_{2}$ -H), 7.05-7.46 (5H, m, C $_{6}$ H $_{5}$), 9.35 (1H, br.s, NH). All new compounds in this paper gave satisfactory elemental analyses.
- 6. Compound 10 : yield 82 % ; mp 158.5-160.0 °C (decomp.). IR (KBr): 1690, 1660 (C=O), 1030 (SO) cm⁻¹. 1 H-NMR (Me₂SO-d₆): δ 7.06 (1H, s, C₂-H), 7.32-8.12 (15H, m, ArH), 12.40 (1H, br.s, NH).
- 7. Compound 11: mp 127.5-129.0 °C. MS m/z: 169 (M⁺). IR (KBr): 1660 (C=O) cm⁻¹. ${}^{1}\text{H-NMR} \text{ (CDCl}_{3}\text{): } \delta \text{ 1.23 (3H, t, CH}_{2}\text{CH}_{3}\text{), 1.37 (3H, t, CH}_{2}\text{CH}_{3}\text{), 2.59 (2H, q, CH}_{2}\text{CH}_{3}\text{), 2.86 (2H, q, CH}_{2}\text{CH}_{3}\text{), 11.82 (1H, br.s, NH).}$
- 8. Compound 13: yield 84 % from 3-acetyl-5-acetylmethylamino-2-phenyl-2,3-dihydro-1,3,4-thiadiazole. mp 144.0-145.0 °C (decomp.). MS m/z: 293 (M $^+$). IR (KBr): 1690, 1675 (C=O), 1065 (SO) cm $^{-1}$. 1 H-NMR (CDCl $_3$): δ 2.33 (3H, s, COCH $_3$), 2.49 (3H, s, COCH $_3$), 3.51 (3H, s, N-CH $_3$), 6.62 (1H, s, C $_2$ -H), 6.96-7.52 (5H, m, ArH).
- 9. P. G. Sammes, Chem. Rev., 1976, 76, 113.
- 10.C. H. Chen, Tetrahedron Lett., 1976, 25.
- 11.C. H. Chen and B. A. Donatelli, J. Org. Chem., 1976, 41, 3053.
- 12.J. W. A. M. Janssen and H. Kwart, J. Org. Chem., 1977, 42, 1530.
- 13.N. Ueda, H. Shimizu, T. Kataoka and M. Hori, Tetrahedron Lett., 1984, 25, 757.
- 14.L. Carlsen, N.Harrit, and A. Holm, J. Chem. Soc., Perkin Trans. 1, 1976, 1404.
- 15.G. Karlström, B. O. Roos, and L. Carlsen, J. Am. Chem. Soc., 1984, 106, 1557.

Received, 2nd September, 1985