DEMETHYLATIONS IN THE CULARINE SERIES

Angel Rodriguez de Lera, Carmen Villaverde, and Luis Castedo*

Departamento de Química Orgánica de la Facultad de Química y
Sección de Alcaloides del CSIC.Santiago de Compostela, Spain

<u>Abstract</u> - Selective demethylation in 7,4',5'-substituted cularine compounds can be achieved under two different sets of conditions (acidic and nucleophilic). Less satisfactory results are obtained in the 7,3',4'-substituted analogs.

INTRODUCTION

The methylation of phenols and the selective 0-demethylation of aryl methyl ethers constitutes an important procedure for the interconversion of naturally occurring compounds. 1

The cularines are a group of isoquinoline alkaloids whose number has recently been increased by the isolation of several new members, mainly of a phenolic nature. 3,4 This fact makes the cularines an interesting choice for demethylation studies. For this purpose we selected two general reagents presenting opposite but in some instances complementary behaviour:

- A) 48% HBr/AcOH, an acidic reagent which causes cleavage by a combination of SN1 and/or a partially charged cyclic transition state.
- B) Ets⁻, a nucleophilic reagent in which the cleavage pattern is essentially SN2.

RESULTS AND DISCUSSION

<u>Demethylation of 3',4'-substituted cularines.</u> The selective demethylation of cularine 1 under acidic conditions (48% HBr/AcOH, 135°C, 35 min) has been reported as giving 7,3'-didemethylcularine (breoganine) 6. However, in our hands a mixture of demethylated compounds 2-6 was obtained (Table I), breoganine 6 being the major component. By using milder conditions but longer times (65-70°C, 144 h) a mixture of the diphenolics celtisine $\underline{5}$ and breoganine $\underline{6}$ resulted (Table I). These results can be explained assuming that the methoxyl groups at positions 7 and 3' are more basic than that at 4' due to a mesomeric contribution of the oxepinic oxygen.

Under nucleophilic conditions' the demethylation of cularine $\underline{1}$ occurred preferentially at position 4' (see Table I). When these conditions (NaSEt 5mmol, reflux DMF, 7 h) were used, the monophenolic cularines $\underline{3}$ and $\underline{4}$ produced only the diphenolics celtisine $\underline{5}$ (42%) and breoganine $\underline{6}$ (45%) respectively, together with a certain amount of the initial monophenolic material. The formation of a phenoxide anion in ring D now deactivates the methoxyl group at the ortho-position for a further nucleophilic attack. Treatment of monophenolic cularidine $\underline{2}$ with NaSEt (3mmol, reflux DMF, 2 h) gave the expected diphenols $\underline{5}$ (43%) and $\underline{6}$ (26%) in similar proportions as in the case of cularine $\underline{1}$.

	Reaction conditions Product	48% HBr, 135°C 35 min	/AcOH(1:1) 65-70°C 144 h	NaSEt(3mmol) DMF/reflux 40 min	NaSEt(5mmol) DMF/reflux 4 h	
	cularidine <u>2</u> (R ₁ =H,R ₂ =R ₃ =Me)	3		15		
A B N-Me	celtine <u>3</u> (R ₁ =R ₃ =Me,R ₂ =H)	3		33		
	3'-0-demethyl- cularine 4 (R ₁ =R ₂ =Me,R ₃ =H)	10.5		21		
4.\(\sum_3\),	celtisine <u>5</u> (R ₁ =R ₂ =H,R ₃ =Me)	18	21	13	43	
R ₂ 0 OR ₃	breoganine <u>6</u> (R ₁ =R ₃ =H;R ₂ =Me)	30.5	36	10	18	

R,

Table I.- Yields in % for demethylation products of cularine $\frac{1}{1}$ (R₁=R₂=R₃=Me) under different conditions. All products have been identified by comparison with authentic samples. 3 Separation of cularidine $\underline{2}$ and celtine 3 was accomplished by their transformation into their 0-acetyl derivatives (see experimental).

Demethylation of 4',5'-substituted cularines.~ The demethylation of sarcocapnine 7 under various conditions indicated in Table II ocurred preferentially at its more hindered methoxyl group, that at 5' position. Under milder acidic conditions (60°C) demethylation at 5' was mainly observed, but a higher temperature (90°C) resulted in catechol 10, which has not been found in nature. Its identity was confirmed by conversion into the methylenedioxy derivative $\frac{12}{12}$ (R₁=Me, R₂+R₃=-CH₂-) through methylenation with CH₂Br₂. However, a change in demethylation selectivity was observed when sarcocapnine $\frac{7}{2}$ was treated with NaSEt, which gave claviculine 9. The initial loss of the methyl group at 5' position now ensures that the second demethylation takes place at 7 position.

	Reaction conditions Product	48% HI 60°C 14 h	3r/Ac0 60°C 30 h	90°C	NaSEt(3mmol) DMF/reflux 1 h	NaSEt(5mmol) DMF/reflux 2 h
R ₁ 0 ⁷	sarcocapnine <u>7</u> (R ₁ =R ₂ =R ₃ =Me)	31		!	28	
ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	sarcocapnidine <u>8</u> (R ₁ =R ₃ =Me,R ₂ =H)	56	58		6	
R ₂ 0 3	claviculine 9 (R ₁ =R ₂ =H,R ₃ =Me)				22	77
R ₃ 0 4'	10(R ₁ =Me,R ₂ =R ₃ =H)		10	47		
3.	$\frac{11}{R_1} (R_1 = R_2 = R_3 = H)$			8.5	,	

Table II.- Yields in % for demethylation products of sarcocapnine $\frac{7}{2}$ (R,=R₂=R₃ \approx Me) under different conditions. All known products have been identified by direct comparison with authentic samples. 3

EXPERIMENTAL

All melting points were measured in a Büchi apparatus and are uncorrected. NMR spectra were determined with a Bruker WM-250 spectrometer using TMS as internal reference. Mass spectra were run on a KRATOS MS-25 instrument operating at 70 eV. Microanalysis for C, H, N, were carried out on a Perkin-Elmer 240-B elemental analyzer.

1 mm and 0.2 mm layers of Merck 60 GF_{254} silica gel were normally used for preparative and analytical thin layer chromatography, respectively; the solvent systems were benzene-ethyl acetate-diethyl amine (7:2:1) for initial separation of phenolic compounds and methylene chloride-ethyl alcohol (9.5:0.5) for further purification and for separation of non-phenolic compounds.

48% HBr was redistilled over a trace of 50% hypophosphorous acid. 80% NaH in oil dispersion was supplied by Merck.

General procedure

- A) Demethylation in acidic conditions.- 0.58 mmol of substrate were dissolved in 3 ml of 48% HBr-AcOH (1:1 or 1:2) and heated under an inert atmosphere during the time indicated. The reaction mixture was diluted with water (10 ml), neutralized with NaHCO $_3$ and extracted with CH $_2$ Cl $_2$ (5x15 ml). The extracts were dried and evaporated to give a residue which was subjected to preparative thin layer chromatography.
- B) Demethylation using a nucleophilic reagent. Ethanethiol (2.1 mmol) dissolved in dry DMF (1 ml) was added dropwise to a suspension of sodium hydride (2.1 mmol) in dry DMF (2 ml) under an atmosphere of nitrogen. The mixture was stirred for 5 min before addition of a solution of the cularine compound (0.70 mmol) in dry DMF (2 ml) and then refluxed during the time indicated in the table, evaporated, water added, and extracted with $\mathrm{CH_2Cl_2}$ (5x20 ml). The extracts were dried and evaporated to give a solid residue which was purified as above.

Separation of cularidine $\underline{2}$ and celtine $\underline{3}$. The fraction containing cularidine $\underline{2}$ and celtine $\underline{3}$ was dissolved in dry pyridine (1 ml), 0.5 ml of acetic anhydride added and the solution refluxed during 1 h. Then the mixture was evaporated, water added and after extraction with CH₂Cl₂ afforded a mixture of acetates which was subjected to preparative tlc.

O-Acetylcularidine. Crystallized from ethanol-ether as its hydrochloride mp 250-252°C (dec.). PMR (CDCl $_3$, 250MHz, $_5$): 2.39(s, 3H, 0C0CH $_3$), 2.57(s, 3H, NMe), 2.70-3.30(m, 6H, 3x-CH $_2$), 3.79(s, 3H, 0Me), 3.84(s, 3H, 0Me), 4.35(dd, J $_{\rm AX}$ =11.7 Hz, J $_{\rm BX}$ =3.5 Hz, 1H, H-1), 6.50(s, 1H, Ar-H), 6.56(s, 1H, Ar-H), 6.88(d, J=8.3 Hz, 1H, Ar-H), 6.92(d, J=8.3 Hz, 1H, Ar-H). MS m/e(%): 369(M $^+$, 57), 354(100), 312(91), 69(82). Anal. Calcd for C $_{\rm 21}$ H $_{\rm 23}$ NO $_{\rm 5}$ (free base): C, 68.29; H, 6.23; N, 3.79. Found: C, 68.01; H, 6.29; N, 4.07.

O-Acetylceltine. - Cristallized from ethanol mp 175-177°C. PMR(CDCl $_3$, 250 MHz, δ): 2.29(s, 3H, OCOCH $_3$), 2.57(s, 3H, NMe), 2.72-3.33(m, 6H, 3x-CH $_2$ -), 3.74(s, 3H, OMe), 3.81(s, 3H, OMe), 4.44(dd, J_{AX} =12 Hz, J_{BX} =3.7 Hz, 1H, H-1), 6.60(s, 1H,

Ar-H), 6.74(d, J=8.4 Hz, 1H, H-6), 6.86(d, J=8.4 Hz, 1H, H-5), 7.00(s, 1H, Ar-H). MS m/e(%): $369(M^+, 68)$, 354(44), 326(17), 312(100). Anal. Calcd for $C_{21}H_{23}NO_5$: C, 68.29; H, 6.23; N, 3.79. Found: C, 68.33; H, 6.34; N, 3.45.

<u>Hydrolysis of 0-acetyl compounds</u>. - To a solution of 0.05 g (0.135 mmol) of 0-acetyl compound in methanol (5 ml) was added in one portion 0.1 g of anhydrous $\mathrm{Na_2CO_3}$. The mixture was stirred at room temperature during 1 h, diluted with water (25 ml), saturated with $\mathrm{NH_4Cl}$ and extracted with $\mathrm{CH_2Cl_2}$ (3x15 ml) to afford the corresponding phenolic compound.

Diphenol 10.- Cristallized from ethanol-ether as its hydrochloride mp 248-250°C (dec.). PMR(CDCl $_3$), 250 MHz, $_6$): 2.59(s, 3H, NMe), 2.84-3.47(m, 6H, 3x-CH $_2$ -), 3.87(s, 3H, 0Me), 4.53(dd, J $_{\rm AX}$ =12.3 Hz, J $_{\rm BX}$ =4.2 Hz, 1H, H-1), 6.47, 6.59, 6.76 and 6.91(4d, J=8.4 Hz, 1H each, 4xAr-H). MS m/e(%): 313(M $^+$, 100), 298(27), 296(40) 282(27), 175(19), 174(31). Anal. Calcd for C $_{18}$ H $_{20}$ NO $_4$ Cl: C, 61.80; H, 5.72; N, 4.00. Found: C, 61.30; H, 5.96; N, 3.63.

Methylenation of catechol 10.- Anhydrous KF (0.082 g, 1.58 mmol) was added to a solution of catechol $\underline{10}$ (0.1 g, 0.32 mmol) in anhydrous DMF (2 ml). Then dibromomethane (0.061 g, 0.352 mmol, 10% excess) was added to the solution and the mixture heated at 110°C under an argon atmosphere for 2 h. Evaporation to dryness followed by addition of water (15 ml), extraction with $\mathrm{CH_2Cl_2}$ (5x15 ml), drying and evaporation afforded a residue which was separated by tlc to give 0.030 g of $\underline{10}$ and 0.035 g of $\underline{12}$.

Compound $\frac{12}{12}$ crystallized from ethanol-ether as its hydrochloride mp $172-174^{\circ}C$ (dec.). PMR(CDCl $_3$, 250 MHz, $_5$): 2.62(s, 3H, NMe), 2.80-3.38(m, 6H, 3x-CH $_2$ -), 3.88(s, 3H, 0Me), 4.42(dd, $_{AX}$ =11.8 Hz, $_{BX}$ =3.0 Hz, 1H, H-1), 5.98(d, J=1.4 Hz, 1H, 0CH $_2$ 0), 6.09(d, J=1.4 Hz, 1H, 0CH $_2$ 0), 6.52(d, J=8.1 Hz, 1H, Ar-H), 6.56(d, J=8.1 Hz, 1H, Ar-H), 6.80(d, J=8.4 Hz, 1H, Ar-H), 6.91(d, J=8.4 Hz, 1H, Ar-H). MS m/e(%): 325(M $^+$, 100), 310(31), 308(52), 294(27), 174(50). Anal. Calcd for $_{C_19}^{H_{20}}$ NO $_4$ Cl: C, 63.07; H, 5.53; N, 3.87. Found: C, 62.81; H, 5.42; N, 4.21.

ACKNOWLEDGEMENT

We thank the Comisión Asesora (Spain) for its financial support.

REFERENCES

- 1. L. Castedo, A. Rodriguez de Lera, J. M. Saá, R. Suau, and C. Villaverde, Heterocycles, 1980, 14, 1135.
- a) L. Castedo, "The Chemistry and Pharmacology of Cularine Alkaloids", in The Chemistry and Biology of Isoquinoline Alkaloids, ed. by Phillipson et al., Springer-Verlag Berlin Heidelberg, 1985, pp. 102-125.
 - b) B. Gözler and M. Shamma, J. Nat. Prod., 1984, 47, 753.
- a) J. M. Boente, L. Castedo, R. Cuadros, A. Rodriguez de Lera, J. M. Saá, R. Suau, and M. C. Vidal, Tetrahedron_Lett., 1983, 24, 2303.
 - b) J. M. Boente, L. Castedo, A. Rodriguez de Lera, J. M. Saá, R. Suau, and M. C. Vidal, <u>Tetrahedron Lett.</u>, 1984, <u>25</u>, 1829.
- 4. a) D. P. Allais and H. Guinadeau, <u>J. Nat. Prod</u>., 1983, <u>46</u>, 881.
 - b) H. Guinadeau and D. P. Allais, Heterocycles, 1984, 22, 107.
- 5. M. V. Bhatt and S. V. Kulkarni, Synthesis, 1983, 249.
- 6. T. Kametani, S. Shibuya, and S. Sasaki, Yakugaku Zasshi, 1967, 87, 198.
- 7. G. I. Feutrill and R. N. Mirrington, <u>Tetrahedron Lett.</u>, 1970. 1327: <u>Aust. J. Chem.</u>, 1972, <u>25</u>, 1719, 1731.
- 8. J. H. Clark, H. L. Holland, and J. M. Miller, <u>Tetrahedron Lett.</u>, 1976, <u>38</u>, 3361.

Received, 9th August, 1985