NEW SYNTHESIS OF DIHYDRO-AND TETRAHYDRO-1,5-BENZODIAZEPINES BY REDUCTIVE CONDENSATION OF O-PHENYLENEDIAMINE AND KETONES IN THE PRESENCE OF SODIUM BOROHYDRIDE

Hilda R. Morales, Arturo Bulbarela, and Rosalinda Contreras* Centro de Investigación y de Estudios Avanzados del I.P.N. Departamento de Química. Apartado Postal 14-740. 07000-México,D.F.

Abstract — Dihydro- and tetrahydro-benzodiazepines have been synthesized from o-phenylenediamine dihydrochloride and aliphatic ketones in the presence of sodium borohydride.

This article describes a new synthesis of 1,5-benzodiazepine derivatives, and represents a useful extension of known preparative routes to these compounds. It has been described previously that NaBH₄ can be efficiently used to achieve monoalkylation of primary amines with carbonyl compounds¹. Herein, we would like to extend our findings to an aromatic diamine. Thus, it was observed that o-phenylenediamine dihydrochloride reacts with two ketone molecules in the presence of sodium borohydride affording the unexpected 1,5-benzodiazepines in good yields (Table I).

In all cases the products were characterized by spectroscopic methods: IR, MS, and 1 H NMR (Table I); 13 C NMR (Table II).

Although many examples of dihydro- and tetrahydro-1,5-benzodiazepines are known, $^{2-5}$ their synthesis has been generally carried out by reaction of o-phenylenediamine with either and α,β -unsaturated carbonyl compounds or the corresponding β -halocarbonyl compounds.

The ${\it NaBH}_4$ procedure described here has the advantage of greater simplicity in manipulation, and higher yields.

Compounds I and II were also obtained when o-phenylenediamine hydrochloride was treated with 4-methyl-3-penten-2-one and sodium borohydride. These samples have been prepared by Hunter et al.^{7,8} by a different synthetic method and our spectroscopic data are in agreement with those described in their reports.

Compounds III, IV and V are new species and their spectral data are summarized in Tables I and II. Compounds III and IV appeared as a single isomer as can be seen in ¹³C nmr, assignment of a trans or cis structures have not been investigated. When a mixture of acetone and cyclohexanone was allowed to react with the diamine dihydrochloride, compounds I and II were obtained, instead of other possible condensation products VII and VIII. Similarly an isomeric mixture was obtained when 2-methylcyclohexanone or methyl ethyl ketone was used.

As expected, the 1,5-benzodiazepines were not obtained when aromatic ketones or aldehydes like acetophenone, acetaldehyde or benzaldehyde were used.

EXPERIMENTAL.

The procedure for the preparation of 2,3-dihydro-2,4,4-trimethyl-1H-1,5-benzo-diazepine (I) and 2,3,4,5-tetrahydro-2,2,4-trimethyl-1H-1,5-benzodiazepine (II) is representative of all reactions performed.

A 50 ml reaction flask, fitted with a magnetic stirring bar, was charged with 1.0 g (5.5 mmol) of o-phenylenediamine dihydrochloride, 10 ml of 1:1 isopropanol/methanol solution, 1.6 ml (22 mmol) of acetone and 0.42 g (11 mmol) of $NaBH_4$.

The reaction mixture was stirred for 24 h at room temperature, diluted with 10 ml (20 mmol) of 2N NaOH, and then extracted with $\mathrm{CH_2Cl_2}$. The extract was dried over sodium sulfate and concentrated to give 2.2 g of crude product as a brown oil which was chromatographed on a silica gel column (hexane/ethyl acetate 9:1) to yield 0.20 g (20%) of I, mp 120-121°C (lit. 124°C⁹) and 0.52 g (50%) of II, mp 56-58°C. The same procedure was followed for the synthesis of III-V (Table I).

Table I. Data of 1,5-Benzodiazepines Prepared.

Ketone ^a , 1,	5-benzodiazepines	yie10 [%]	d ^b mp c	IR (KBr) d	¹ H NMR	MS π/e (M [†])
Acetone	O N=	20	120-121	3500 3293 1650	1.35, s (6H) 2.2, s (2H) 2.35, s (3H) 2.95, b (1H) 6.65-7.3, m (4H)	188
		50	56-58	3500	1.1, s (3H) 1.22, d (3H) J=(6H) 1.38, s (3H) 1.5-1.95, m (2H) 3.3, m (1H) 3.7, b (2H)	190 _z)
Cyclo- pentanone	OT H	68	72-74	3500	1.1-2.3, m (15H) 3.3, b (2H) 3.6, b (1H) 6.7, m (4H)	242
Cyclo- hexanone	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	60	97-99	3450	0.8-2.4, m (19H) 3.1, b (2H) 3.7, b (1H) 6.7, m (4H)	270
Cyclo- heptanone	N= N	40	134-135	3500 3295 1700	0.8-2.95, m (23H 3.6, b (1H) 7.0, m (4H)	H) 296

a) As the other starting material o-phenylenediamine dihydrochloride is used;

b) yield based on o-phenylenediamine dihydrochloride; c) uncorrected;

d) $v = cm^{-1}$; e) CDC1₃ (TMS).

Table II $^{13}\text{C-NMR}$ (CDC1 $_3$ /TMS) a $\delta[ppm]$

3									
	^C 1,6	^C 2,5	C _{3,4}	C ₇	$^{\mathrm{C}}_{10}$	c_9	С8	C _{11,12}	
			125.4	171.8	67.84	45.2	30.41	29.71	
	140.6		126.9						
2									
۵ م									
/,									
8									
	137.7	119.8		51.5	51.8	47.9	32.94	24.0	
	140.4		121.7					26.3	
, ,									
									
1 4 \				C ₁₂	C ₇ (С ₁₁ С	8,13,16	C _{9,10,14,}	15
) 15	137.8	119.6	120.6	65.4	58.4		35.4	22.3	-
•	139.7		130.0				37.9	23.2	
ول							38.4	23.6	
							,	24.8	
				C ₁₃	C ₇ C ₁	2 C _{6.1}	8,14 ^C 9	,10,11,15,1	16.17
ال	136.5	118 8	121 N		0.1 49		4.0	19.9	22.1
11		120.4					5.1		. 25.7
) la	111.0	120.	101,1				55.6	21.6	26.8
-/ ₉									
17									
)'8				c ₇ (C ₁₄ C	13 ^C 8.1	5,20 ^C 9.	10,11,12,10	6,17,18,19
20/19	137.4	121.3	125.5				10.9	22.5	28.9
<u>, "</u>	139.8						38.4	23.2	29.5
- 1"			• •				88.1	26.4	29.7
۱۵/رو								28.4	30.1

a) Chemical shifts in columns were not assigned.

ACKNOWLEDGMENT

The authors are grateful to Conacyt México for financial support and Dr. R.L. Santillán for critical reading.

REFERENCES

- H.R. Morales, M. Pérez-Juárez, L. Cuéllar, L. Mendoza, H. Fernández and
 R. Contreras, Synth. Commun., 1984, 14, 1213.
- b. R. Contreras, L. Cuéllar, H. Fernández, R. González, M. Pérez and H.R. Morales, Congress Abs., Rev. Soc. Quim. Mex., 1984, 25, 241.
- O.E. Fancher and G. Nichols, U.S. Pat., 2,899,359, Chem. Abs., 1960, 54, 598.
 U.S. Pat., 302,951, Chem. Abs., 1962, 57, 8592.
- 3. H. Stetter, Chem. Ber., 1953, 86, 161.
- 4. W. Ried and P. Stahlholfen, Chem. Ber., 1957, 90, 815.
- 5. W. Ried and E. Torinus, Chem. Ber., 1959, 92, 2902.
- G.A. Archer and L.H. Sternbach, <u>Chem. Rev.</u>, 1968, <u>68</u>, 773.
- 7. P.W.W. Hunter and G.A. Webb, <u>Tetrahedron</u>, 1972, <u>28</u>, 5573.
- 8. P.W.W. Hunter and G.A. Webb, Tetrahedron, 1973, 29, 147.
- 9. J.B. Ekeley and R.J. Wells, Chem. Ber., 1905, 2259.

Received, 4th September, 1985