NOVEL REACTIONS OF CYCLIC SULFUR YLIDE, 1-CYANO-2-METHYL-3,4-DIHYDRO-2-THIANAPHTHALENE

Mikio Hori, Tadashi Kataoka, Hiroshi Shimizu, Masahiro Kataoka, and Mequmi Ikemori

Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502, Japan

Thermal reactions of 1-cyano-2-methyl-3,4-dihydro-2-thianaphthalene ($\underline{1}$) gave 1-cyano-1-methylisothiochroman ($\underline{2}$) (39.0%) together with dimers ($\underline{3a}$, 10.8%, $\underline{3b}$, 4.6%) in benzene, and $\underline{2}$ (8.6%), $\underline{3a}$ (31.6%) and $\underline{3b}$ (22.6%) in acetonitrile. Geometry of the dimers ($\underline{3}$) was determined by the IR and Raman spectroscopy. The dimers ($\underline{3}$) were easily formed by the reaction of $\underline{1}$ with 1/15 eq. tetracyanoethylene in benzene at room temperature. Charge transfer interaction would participate in dimerization of 1.

Refluxing the ylide $(\underline{1})$ with acetic acid in dichloromethane gave 1-cyanoisothio-chroman $(\underline{4})$ (37.6%) and a ring-opened product $(\underline{5})$ (34.7%), whereas the thermal reaction in benzene afforded $\underline{5}$ (50.0%) and a spiro-compound $(\underline{6})$ (33.2%). Interestingly, thermal reaction of 1 with p-toluenesulfonic acid gave $\underline{4}$ (39.6%), methyl p-toluenesulfonate (21.4%), 3a (5.5%) and a ring-opened tosylate (7) (20.7%).

Benzenesulfonic acid and methanesulfonic acid reacted similarly. The tosylate (7) was reduced with sodium cyanoborohydride to ethylbenzene derivative (8).

Thermal reactions of 1 with phenol or succinimide in benzene afforded the spiro-compound ($\underline{6}$)(69.9% or 85.2%), whereas the reaction with thiophenol gave a ring-opened product (9)(68.0%).