ACYLATION OF ETHYL INDOLE-2-CARBOXYLATE

Yasuoki Murakami, Masanobu Tani, Sadao Ito, and Yuusaku Yokoyama School of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274, Japan

Acylation of indoles at the C-3 position is synthetically important reaction. However, the acylation of indole itself $(\underline{1})$ cannot be carried out in strongly acidic condition, because $\underline{1}$ is labile in such condition. On the other hand, ethyl indole-2-carboxylate $(\underline{2})$ is a stable equivalent of $\underline{1}$, and the acylation of $\underline{2}$ has not been studied. So we became interested for developing methods for the acylation of 2 under strongly acidic condition.

- A. Mixed Anhydride Method: $\underline{2}$ was easily reacted with various carboxylic acids by using $(CF_3CO)_2O$ and H_3PO_4 to give 3-acylindoles $(\underline{3})$. Weaker carboxylic acids tended to give better yields than stronger acids. Thus, the electronic effect in the carboxylic acid is critical for this reaction.
- B. Friedel-Crafts Reaction: The reaction of 2 with various acid chlorides using AlCl₃ was found to proceed smoothly. Acid chlorides derived from weaker acids tended to give the C-3 acylated products (3), whereas acid chlorides derived from stronger acids tended to give the C-5 acylated products (4) accompanied by a small amount of the C-7 acylated products (5). In order to increase the regioselectivity, we further examined this reaction by changing molar ratio of AlCl₃, kinds of Lewis acid, and acylating reagent from acid chloride to anhydride. It is noteworthy that the Friedel-Crafts reaction of 2 catalyzed by AlCl₃ gave 5-acylated product in some cases, offering a new route for functionalization on benzene ring of indole nucleus.