REASSIGNMENTS OF THE C=C AND C=O STRETCHING VIBRATIONS $\hbox{IN SIX-MEMBERED} \ \alpha \, , \beta \, \hbox{-} \hbox{UNSATURATED} \ \ \hbox{LACTAMS}$

Tozo Fujii, Yukimi Takai, Masashi Ohba, and Hiroshi Kogen
Faculty of Pharmaceutical Sciences, Kanazawa University,
Takara-machi, Kanazawa 920, Japan

A new method for differentiating the lactam C=O infrared (IR) absorption from the C=C absorption in the six-membered, α, β -unsaturated lactam system has been developed by utilizing association of dichloroacetic acid or a similar carboxylic acid with the lactam C=O, which decreases the frequency of the lactam C=O absorption by $20-40~\text{cm}^{-1}$. On the basis of such an association shift as well as the results obtained from solvent shift experiments with the lactams 1, 2, 4, and 6-8, the lactam C=O and the conjugated C=C absorptions observed for each of the α,β -unsaturated lactams 3-8 in the 1590-1670 cm⁻¹ region were differentiated from each other. As a result, it has now become clear that in six-membered lactams the carbonyl frequency is slightly (10-20 cm⁻¹) lowered by conjugation with a double bond, in line with the usual lowering. This is the opposite of what has been proposed in the literature. In addition, the deuterated α,β -unsaturated lactam 10 was prepared from the exocyclic methylene lactam 9 by treatment with NaOD in a mixture of D₂O and EtOD. This deuterium labeling was found to decrease the frequency of the 1666 ${\rm cm}^{-1}$ absorption, assigned to the C=C stretching vibration, by 17 cm⁻¹, supporting the correctness of the above differentiation.