LINCOMYCIN ANALOGUES. II. CHAIN-EXTENSION OF METHYL-6-ALDEHYDO- $3,4-0-ISOPROPYLIDENE-1-THIO-\beta-D-GALACTO-1,5-PYRANOSIDE$

Jean M. J. Tronchet
Institute of Pharmaceutical Chemistry, Geneva University, 30,
quai E. Ansermet, CH - 1211 Geneva , Switzerland
Mohamed A. M. Massoud*
Pharmaceutical Chemistry Department, Faculty of Pharmacy,
Mansoura University, Mansoura, Egypt

<u>Abstract</u>—— Synthesis of methyl 2,3,4,6-tetra-0-acetyl-1-thio- \propto -D-galactopyranoside and its β -anomer ($\frac{3}{2}$ and $\frac{4}{2}$) from the 2,3,4,6-tetra-0-acetyl- \propto -D-galactopyranosyl bromide via the isothiouronium salt in HMPT involved a considerable increase in the proportion of the \propto -anomer. Deacetylation of ($\frac{3}{2}$ and $\frac{4}{2}$) with sodium methoxide yielded $\frac{5}{2}$ and $\frac{6}{2}$ respectively. Conversion of ($\frac{6}{2}$) into the corresponding 3,4-isopropylidene derivative ($\frac{7}{2}$) followed by oxidation with Collin reagent gave the aldehydo-sugar ($\frac{8}{2}$) which when reacted with a stabilised phosphorane led in excellent yield to the Z-unsaturated bromo-sugar ($\frac{9}{2}$).

The total synthesis of methyl \propto -thiolincosaminide (I), the sugar moiety of lincomycin , was reported by Magerlein starting with methylthio- \propto -D-galactopyranoside (obtained in very low yield in the acid-catalysed reaction of D-galactose with methanethiol) which is converted to the corresponding 6-deoxy-6-nitrothiosugar (II) followed by the chain-extension. Other methods of syntheses 3-8 involved the chain extension of the aldehydo-sugar (III) and introduction of the methylthiogroup at C-1 at the final step through the acid catalysed reaction. Bannister indicated the conversion of the methylthio- β -D-galactopyranoside analogues of (I) into the correspoding \propto -anomer.

In previous paper 10 we reported the chain extension of (III) through Wittig reaction using stabilised phosphoranes which would provide the same carbon skeleton of the sugar moiety of lincomycin modified at C-8. This paper describes the synthesis of the methylthio- \propto -D-galactopyranoside and their B-anomer and also the conver-

sion of the latter into the methylthio derivative of (III).

The application of the procedure of Cerny and Pacak $^{\hat{1}\hat{1}}$ on 2,3,4,6-tetra-0-acetyl- α -D-galactopyranosylbromide 12 (1) using dry hexamethylphosphoric triamide (HMPT) as solvent via the isothiouronium bromide ($\underline{2}$) gave a mixture of two products (t.1.c), a major one (ethyl acetate - hexane 1:2) of $\rm R_{f}$ 0.34 and a minor one of $\rm R_{f}$ 0.38. The chromatographic separation of both products with a long column of "silica gel 60F 254 Merck" gave the faster moving component (3), mp 101-102°C, in 8% yield, followed by a mixture of both products in 30% yield and finelly the slower moving one in 41% yield. The latter was identified as the methylthio-B-O-qalactopyranoside $(\frac{4}{2})$ by its mp 107-108°C and $\left[\alpha\right]_{D}^{+3}$ ° (in chloroform) which have been reported 13 . The ratio of 3 (\approx 12%) were determined by examining the integration area of H-C5 in the 1 H-nmr spectrum of the mixture. The two products ($\frac{3}{2}$ and $\frac{4}{2}$) are consistant with the molecular formula $C_{15}^{}$ $H_{22}^{}$ $\theta_{9}^{}$ S obtained by satisfactory elemental analysis, mass spectra and supported by $^{\dot{1}}$ H-nmr $^{\dot{1}4}$. The mass spectra of both products indicate the first elimination of the methylthic group giving (IV) like the tetra-acetylqlycosides followed by the characteristic fragmentation of (IV) $^{\dot{1}\dot{5}}$. Hydrolysis of (3 or 4) with sodium methoxide in anhydrous methanol 13 gave the corresponding deacetylated derivatives $(\frac{5}{2} \text{ and } \frac{6}{6})^{16}$ identified as the ∞ - and β -methylthiogalactopyranosides, respectively, through their mp and $[lpha]_{\mathsf{D}}$ which were consistent with reported data 2 , 13 . Therefore, (3) was assigned as the methyl 2,3,4,6-tetra-0-acetyl- of - 0 galactopyranoside. It is noteworthy that the use of HMPT (dipolar-aprotic solvent) would decrease the activation energy of the reaction 17 , stabilise a carbocation intermediate by solvation 18 , and render the thiourea (non charged nucleophile) more free to react as they are less solvated in the HMPT, thus promoting the formation of of -anomer.

Protection of (6) via the 3,4-isopropylidene formation using dry acetone, powdered anhydrous cupric sulfate and conc. sulfuric acid (sp. gr. 1.84) resulted in the elimination of the methylthia group and the formation of 1,2:3,4-di-0-isopropylidene - α -D-galactopyranose 19 . When the reaction was carried out without the addition of conc. sulphuric acid, (7) was isolated 20 . The assignment of its structure was performed by the $^1\text{H-nmr}$ spectrum, which exhibits two signals at δ = 1.39 and 1.53 (2s, 2X3H, acetonide H_3C X 2) and the mass spectrum which gives the characteristic fragmentation of the newly introduced isopropylidene group 21 . Oxidation of $ilde{ ilde{7}}$ with dipyridene-chromium (VI) oxide in $CH_2Cl_2^{22}$ gave 8^{23} as a syrup in 60% yield. Its ir spectrum showed a band at 3480 cm^{-1} (-OH), at 1730 cm^{-1} (-CHO) and at 1380 cm^{-1} isopropylidene group). The H-nmr spectrum indicated the presence of the hydroxylic proton at δ = 3.05 ppm, exchangeable with D $_2$ O, but there was no aldehyde proton. Addition of the phosphorane ($\underline{\underline{V}}$) in benzene to the molar ratio of ($\underline{\underline{S}}$) gave the bromounsaturated methylthiosugar (9) characterised by a band at 1640 ${
m cm}^{-1}$ (-C=C-) in ir spectrum, the shielded proton at δ = 7.45 ppm (d,lH,HC-6) in 1 H-nmr and finally by the two isotopic peaks of equal intensity of bromine in its mass spectrum $^{24};\;\;$ The comparison of ${\sf J}_{5,6}$ and δ HC-6 values in ${}^1{\sf H}$ -nmr with similar analogues 10 indicated the Z-relative configuration.

$$(\underline{e}) \xrightarrow{\text{Dry acetone}} \text{OH} \xrightarrow{\text{OH}} \xrightarrow{\text{OH}} \text{OH} \xrightarrow{\text{OH}} \xrightarrow{\text{OH}} \text{OH} \xrightarrow{\text{OH}} \xrightarrow{\text{OH}} \text{OH} \xrightarrow{\text{OH}} \xrightarrow{\text$$

$$(\underline{8}) + Ph > P = C \xrightarrow{\text{Br}} \xrightarrow{\text{benzene}} OSMe$$

$$(\underline{9}) + OH$$

ACKNOWLEDGEMENT

Wethank Prof. A. Buchs for mass spectra determination and Dr. K. Eder for the microanalysis.

REFERENCES AND NOTES

- 1. 8. J. Magerlein, "Structure-Activity Relationships among the Semisynthetic Antibiotics", ed. D. Perlman, Academic Press, New York, N. Y. 1977. P. 601.
- B. J. Magerlein, <u>Ger. Offen.</u>, 2,050,549 (1971); <u>idem</u>, <u>Tetrahedron Lett.</u>,
 1970. 33.
- 3. G. B. Howarth, W. A. Szarek, and J. K. N. Jones, J. Chem. Soc., 1970, 2218.
- 4. H. Saeki and E. Ohki, Chem. Pharm. Bull., 1970, 18, 789.
- R. Hems, D. Horton, and M. Nakadate, <u>Carbohydr. Res.</u>, 1972, 25, 205.; D. Horton, J. B. Hughes, and J. M. J. Tronchet, <u>Chem. Commun.</u>, 1965, 481.
- 6. I. Atsumi, T. T. Fukumaru, and M. Matsui, <u>Agr. Biol. Chem.</u>, 1973, 37, 2627.
- 7. G. R. Woolard, E. B. Rathbone, W. A. Szarek, and J. K. N. Jones, <u>J. Chem. Soc.</u>, 1976, 950.
- 8. I. Hoppe and U. Schöllkopf, Liebigs Ann. Chem., 1980, 1474.
- 9. B. Bannister, <u>J. Chem. Soc. Perkin I</u>, 1973, 1676.
- 10. J. M. J. Tronchet and M. A. M. Massoud, <u>Helv. Chem. Acta</u>, 1979, <u>62</u>, 1632.
- 11. M. Cerny and J. Pacak, Coll. Czech. Chem. Comm., 1959, 24, 2566.
- 12. M. Bonczai-Martos and F. Korösy, Nature (London), 1950, 165, 369.
- 13. B. Helferich, H. Grünewald, and F. Langenhaff, Chem. Ber., 1953, 86, 873.
- 14. $\frac{3}{2}$: $\frac{1}{1}$ H-nmr (CDCl₃) $\frac{1}{8}$: 1.99, 2.05, 2.07 & 2.08 (4s, 4x3H, -0C0CH₃), 2.17 (s, 3H, -SCH₃), 4.15 (d, 2H, -CH₂0CO), 4.57 (m, 1H, HC-5), 5.26 (m, 2H,HC-2 & HC-3), 5.47 (dd, 1H, HC-4), 5.62 (d, 1H, HC-1, $J_{1,2} = 3.1$ Hz). ms, m/z (rel. int.) : 378 [M +] (0.7), 331 [M+ SMe] (33) and 169 [M+ 209] (100). $\frac{1}{4}$: $\frac{1}{1}$ H-nmr (CDCl₃) $\frac{1}{8}$: 1.98, 2.04, 2.08 & 2.17 (4s, 4x3H, -0C0CH₃), 2.21 (s, 3H, -SMe), 4.0 (m, 1H, HC-5), 4.15 (m, 2H, -CH₂0CO), 4.42 (d, 1h HC-1), 5.1 (dd, 1H, HC-3), 5.29 (dd, 1H, HC-2), 5.48 (dd, 1H, HC-4). ms, m:z (rel. int.) : 331 [M+ - SMe] (100).

- 15. K. Biemann. D. C. De Jongh, and H. K. Schnoes, <u>J. Am. Chem. Soc</u>., 1963, 85, 1763.
- 16. $\frac{1}{2}$: $\frac{1}{2}$ H-nmr (D₂0) δ : 2.3 (s, 3H, -SMe), 3.9 (m, 2H, -CH₂0H), 4.15 4.52 (m, 4H, HC-2, 3, 4, & 5), 5.6 (d, 1H, HC-1, J_{1,2} = 5.6). ms, m/z (rel. int.) : 210 [M +] (47), 163 [M+ SMe] (83). $\frac{1}{2}$: $\frac{1}{2}$ H-nmr (D₂0) δ : 2.38 (s, 3H, -SMe), 3.7 - 4.6 (m, 7H, HC-1, 2, 3, 4, 5, and H₂C-6), ms, m/z (rel. int.) : 210 [M +] (8), 163 [M+ - SMe] (14).
- 17. J J. Delpuech, Tetrahedron Letters, 1965, 2111.
- 18. J. E. Dubois and A. Bienvenüe, Tetrahedron Letters, 1966, 1809.
- 19. D. Horton, M. Nakadate, J. M. J. Tronchet, Carbohydr. Res., 1968, 7, 56.
- 20. $\frac{7}{2}$: Colourless syrup, 87% yield, ir (KBr) cm⁻¹: 3460 (-0H), 1370 (isopropylidene). 1 H-nmr (CDCL $_{3}$ /D $_{2}$ 0) δ : 1.39, 1.54 (2s,2x3H, $_{0}$)-C $_{0}$ CH $_{3}$ 0, 2.21 (s, 3H, -SMe), 3.54 (dd, 1H, HC-2), 3.8 (m, 2H, H $_{2}$ C-6), 4.0 4.36 (m, 3H, HC-3, 4, and 5), 4.4 (d, HC-1, J $_{1,2}$ = 10 Hz). ms, m/z (rel. int.) : 250 [M +] (7), 235 [M+ Me] (4), 203 [M+ SMe] (31).
- 21. Don C. De Jongh and K. Biemann, <u>J. Am. Chem. Soc.</u>, 1964, 86, 67.
- 22. J. C. Collins, W. W. Hes, and F. J. Frank, <u>Tetrahedron Letters</u>, 1968, 30, 3363.
- 23. $\underline{8}$: Brown syrup, ${}^{1}\text{H-nmr}$ (CDC1 $_{3}$) δ : 1.37 and 1.35 (2s, 2x3H, ${}^{0}\text{>}\text{C} \subset {}^{\text{CH}}_{3}$), 2.23 (s, 3H, -SMe), 3.09 (m, 1H, -OH), 3.5 4.3 (m, 5H, HC-1, 2, 3, 4, and 5).
- 24. $\frac{9}{2}$: Brown syrup, 76% yield, ir (KBr) cm⁻¹: 3480 (-OH) 1730 (-COOCH₃), 1640 (-C = C-), 1385 (isopropylidene), 652 (=C-Br). 1 H-nmr (CDCl₃) δ : 1.36 and 1.54 (2s, 2×3H, 0 CCCCH₃), 2.23 (s, 3H, -SMe), 2.7 (m, 1H, -OH), 3.7 (dd, 1H, HC-3), 3.87 (s,3H, -COOCH₃), 4.17 (dd, 1H, HC-4), 4.30 4.45 (m, 2H, HC-1 and HC-2), 4.47 (dd, 1H, HC-5), 7.45 (D,1H, HC-6,). ms, m/z (rel. int.): 369 and 367 [M⁺ Me] (6), 337 and 335 [M⁺ SMe] (9).

Received, 27th November, 1985