SYNTHESIS OF 3,5- \underline{TRANS} -3-METHOXYCARBONYL-1-CARBAPENAM FROM METHYL (+)-PYROGLUTAMATE 1

Tatsuo Nagasaka, * Atsuhiko Tsukada, and Fumiko Hamaguchi Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

<u>Abstract</u> — Synthesis of 3,5-<u>trans</u>-3-methoxycarbony1-1-carbapenam in six steps from methy1 (+)-pyroglutamate is described.

In the past several years, synthetic studies have been conducted on carbapenem and carbapenam systems related to the highly potent antibiotic thienamycin. As a continuation of our research on the chemical modifications of 2-pyrrolidinones, the synthesis of a simple carbapenam derivative from pyroglutamic acid was developed since glutamic acid is a precursor of 1-carbapenem antibiotic. In this paper, the synthesis of 3.5-trans-3-methoxycarbony1-1-carbapenam from methyl (<math>t)-pyroglutamate is described (Scheme 1).

Imino ether $(\underline{2})$ was obtained in high yield by treatment of methyl $(\underline{+})$ -pyroglutamate $(\underline{1})$ with dimethyl sulfate (neat) and then potassium bicarbonate. In this process, the ordinary method⁵ (refluxing a lactam with dimethyl sulfate in benzene) and Bredereck's modification⁶ (using dimethyl sulfate and sodium cyanide) resulted in a complicated mixture. The condensation of $\underline{2}$ with Meldrum's acid⁷ afforded isopropylidene (2-methoxycarbonyl-5-pyrrolidinylidene)malonate $(\underline{3})$ in 73% yield. Contrary to our expectations, the ethanolysis of $\underline{3}$ in the presence of sodium ethoxide⁷ or acid (formic acid or hydrochloric acid) afforded decomposed products. After several experiments,⁸ the desired enamine esters $(\underline{4}$ and $\underline{5})$ were finally obtained by the reaction of $\underline{3}$ with benzyl alcohol or \underline{p} -nitrobenzyl alcohol in the presence of boron trifluoride etherate in refluxing benzene. The enamine esters $(\underline{4}$ and $\underline{5})$ were confirmed to be stereochemically stable \underline{Z} -isomers on the basis of deshielding effects with the ${}^1\text{H}$ -NMR shift reagent. The reduction 9 of $\underline{4}$ and $\underline{5}$ with sodium cyanoborohydride in methanol at \underline{p} H 3-4 afforded diesters ($\underline{6}$ and

Scheme 1

$$\frac{4}{5}$$
 R = PhCH₂ (73%)
 $\frac{5}{2}$ R = p-NO₂C₆H₄CH₂ (52%)

$$\frac{6}{R} = PhCH_2 (32\%)$$

$$\frac{7}{2} R = p - NO_2 C_6 H_4 CH_2$$
 (90%)

a: i) Me_2SO_4 (0.9 equiv.)/neat, r.t., 48 h ii) sat. $KHCO_3$

b: Meldrum's acid (isopropylidene malonate) (1 equiv.), Et_3N (1 equiv.), C_6H_6 , reflux 24 h

c: ROH (3 equiv.), $BF_3 \cdot Et_2O$ (1 equiv.), C_6H_6 , reflux 24 h

d: $NaBH_3CN$ (1 equiv.), $MeOH-H^+$ (pH 3-4), r.t., 2 h

e: 5% Pd-C, H₂ (1 atm), MeOH, 2h

f: PPh_3 (1.1 equiv.), $(PyS)_2$ (1.1 equiv.), CH_3CN , reflux 8 h

 $\frac{7}{2}$) in 32 and 90% yields, respectively. The 1 H-NMR spectra of $\frac{6}{2}$ and $\frac{7}{2}$ indicated that both of these compounds exist as a mixture of nearly equal amount of $\frac{7}{2}$ and $\frac{7}{2}$ trans-isomers, respectively. Their separation by column chromatography was unsuccessful. The catalytic hydrogenation of $\frac{6}{2}$ and $\frac{7}{2}$ on 5% palladium-carbon under atmospheric hydrogen pressure afforded a mixture of amino acids ($\frac{8}{2}$ and $\frac{9}{2}$) in 15 - 47% yield. Although these amino acids could be separated into $\frac{7}{2}$ and $\frac{7}{2}$ trans-isomers ($\frac{9}{2}$) by column chromatography, their stereochemistry could not be determined at this stage. 3,5- $\frac{7}{2}$ Trans-3-methoxycarbonyl-1-carbapenam ($\frac{10}{2}$) was obtained in 52% yield by applying Ohno's method to the cyclization of $\frac{9}{2}$. The 1 H-NMR spectrum of this carbapenam ($\frac{10}{2}$) was identical with that given in the literature. 3 3, 12

EXPERIMENTAL

All melting points were determined by micro-melting point apparatus (Yanagimoto) without corrections. IR and MS spectra were measured on a Hitachi 200-10 and a Hitachi M-80 spectrometer, respectively. 1 H-NMR spectra were recorded on a Varian EM-390 spectrometer. Chemical shifts were recorded in ppm downfield from an internal standard (TMS). The following abbreviations were used: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Chromatographic separations were conducted on a silica gel (Wako-gel C-200) column. Thin-layer chromatography (TLC) was carried out using pre-coated silica gel plates (Kieselgel 60 F-254, Merck).

2-Methoxy-5-methoxycarbonyl-1-pyrroline (2) --- A mixture of 1 (2.67 g, 18 mmol) and Me₂SO₄ (2.11 g, 16 mmol) was stirred at room temperature for 48 h, to which benzene (40 ml) and a saturated aq. KHCO₃ solution (15 ml) were added. The stirring was continued for an additional 30 min. Organic layer was removed, dried over MgSO₄, and evaporated to give 2.43 g (83%) of 2 as a colorless oil. IR (CHCl₃): 1730 (C=0), 1640 cm⁻¹ (C=N). 1 H-NMR (CDCl₃) &: 2.00-2.80 (m, 4H), 3.60 (s, 3H), 3.80 (s, 3H), 4.30-4.70 (m, 1H).

<u>Isopropylidene (5-Methoxycarbonyl-2-pyrrolidinylidene)malonate (3)</u> --- A solution of $\underline{2}$ (7.5 g, 47 mmol), isopropylidene malonate (Meldrum's acid, 6.9 g, 47 mmol) and Et₃N (0.93 g, 47 mmol) in benzene (80 ml) was refluxed for 24 h. After evaporation of the solvent under reduced pressure, the residual solid was re-

crystallized from MeOH to give 9.25 g of $\underline{3}$ as colorless prisms, mp 140-142°C. IR (KBr): 3310 (NH), 1760, 1720 cm⁻¹ (C=0). 1 H-NMR (CDCl $_{3}$) δ : 1.70 (s, 6H), 2.15-2.60 (m, 2H), 3.30-3.55 (m, 2H), 3.80 (s, 3H), 4.45-4.70 (m, 1H), 10.25 (br s, 1H). MS $\underline{m/z}$: 269 (M⁺). Anal. Calcd. for $C_{12}H_{15}NO_{6}$: C, 53.53; H, 5.62; N, 5.20. Found: C, 53.68; H, 5.60; N, 5.15.

Benzyl (5-Methoxycarbonyl-2-pyrrolidinylidene)acetate (4) --- A solution of $\underline{3}$ (1.0 g, 3.5 mmol), PhCH₂OH (1.13 g, 10.5 mmol), and BF₃·Et₂O (0.5 g, 3.5 mmol) in benzene (25 ml) was refluxed for 24 h. After being cooled, the solution was washed with saturated NaHCO₃ solution (20 ml) and brine (20 ml) and dried over MgSO₄. Evaporation of the solvent gave an oil, which, on chromatographic separation by elution with benzene-acetone (10 : 1), gave 746 mg (73%) of $\underline{4}$ as a color-less oil. IR (CHCl₃): 3400 (NH), 1750 cm⁻¹ (C=O). 1 H-NMR (CDCl₃) δ : 2.00-2.75 (m, 4H), 3.70 (s, 3H), 4.20-4.50 (m, 1H), 4.65 (s, 1H), 5.10 (s, 2H), 7.30 (s, 5H), 8.12 (br.s, 1H). MS $\underline{m/z}$: 275 (M⁺).

p-Nitrobenzyl (5-Methoxycarbonyl-2-pyrrolidinylidene)acetate (5) --- By a similar procedure as above using p-nitrobenzyl alcohol in place of PhCH₂OH, <u>5</u> was obtained as prisms (from benzene), mp 113-115 °C. Yield, 52%. IR (KBr): 3500 (NH), 1740 cm⁻¹ (C=0). 1 H-NMR (CDCl₃) δ : 2.20-2.70 (m, 4H), 3.75 (s, 3H), 4.20-4.45 (m, 1H), 4.70 (s, 1H), 5.22 (s, 2H), 7.50 (d, <u>J</u>=9 Hz, 2H), 8.20 (d, <u>J</u>=9 Hz, 2H). MS <u>m/z</u>: 320 (M⁺). Anal. Calcd. for C₁₅H₁₆N₂O₆: C, 56.25; H, 5.04; N, 8.75. Found: C, 56.45; H, 4.87; N, 8.63.

cis- and trans-Benzyl (5-Methoxycarbonyl-2-pyrrolidinyl)acetate (6) --- To a solution of $\underline{4}$ (236 mg, 0.86 mmol), NaBH₃CN (56 mg, 0.9 mmol), and bromocresol green (indicator, 2 mg) in methanol was added dropwise HCl-saturated MeOH untill the color of the solution remaining yellow for more than 10 min (pH 3-4). After being stirred for 30 min, the solution was neutralized with aq. KHCO₃ solution and evaporated to give a residual mass, followed by extraction with CHCl₃. The CHCl₃ extract was dried over MgSO₄ and evaporated to give an oil, which, on chromatographic separation by elution with CHCl₃-acetone (10 : 1), gave 76 mg (32%) of $\underline{6}$ as a colorless oil, bp 125 °C (3 mmHg). IR (CHCl₃): 3350 (NH), 1740, 1700 cm⁻¹ (C=0). 1 H-NMR (CDCl₃) δ : 1.80-2.30 (m, 4H), 2.40-2.65 (m, 2H), 3.40-3.90 (m, 2H), 3.75 (s, 3H), 5.12 (s, 2H), 7.35 (s, 5H).

cis- and trans-p-Nitrobenzyl (5-Methoxycarbonyl-2-pyrrolidinyl)acetate (7) --- Using the above method, $\underline{7}$ was obtained from $\underline{5}$ in 90% yield as an oil. IR (CHCl₃):

3350 (NH), 1770, 1720 cm⁻¹ (C=0). 1 H-NMR (CDCl₃) δ : 1.80-2.70 (m, 4H), 2.40-2.70 (m, 2H), 3.40-3.90 (m, 2H), 3.70 (s, 3H), 5.25 (s, 2H), 7.50 (d, \underline{J} =8 Hz, 2H), 8.20 (d, \underline{J} =8 Hz, 2H). MS $\underline{m/z}$: 322 (M⁺). A portion of \underline{trans} -7 was recovered on the \underline{tert} -butoxycarbonylation of 7 (mixture) with Boc-S reagent (\underline{tert} -butyl \underline{S} -4,6-dimethylpyrimidin-2-ylthiocarbonate): 1 H-NMR (CDCl₃) δ : 1.6-2.4 (m, 4H), 2.5 (d, \underline{J} =6 Hz, 2H), 2.76 (s,, 1H, NH), 3.7 (s, 3H), 3.75 (m, 2H), 5.25 (s, 2H), 7.50 (d, \underline{J} =8 Hz, 2H), 8.20 (d, \underline{J} =8 Hz, 2H).

cis- and trans-(5-Methoxycarbonyl-2-pyrrolidinyl)acetic Acid (8 and 9) --- Catalytic hydrogenation of $\underline{7}$ (1.0 g, 3 mmol) on 5% Pd-C (200 mg) in MeOH (10 ml) gave an oil which was separated into a cis-amino acid (8) (23%) and a trans-amino acid (9) (24%) on chromatography by elution of CHCl₃-MeOH (5 : 1). 8, colorless needles from isopropanol, mp 155-158°C. IR (CHCl₃): 1750 cm⁻¹ (C=0). 1 H-NMR (CD₃OD) δ : 1.6-2.6 (m, 4H), 2.75 (d, \underline{J} =6 Hz, 2H), 3.85 (s, 3H), 4.0 (m, 1H), 4.55 (t, \underline{J} =7.5 Hz, 1H). Anal. Calcd. for $C_{8}H_{13}NO_{4}$: C, 51.33; H, 7.00; N, 7.48. Found: C, 51.23; H, 6.96; N, 7.36. MS (CI) $\underline{m}/\underline{z}$: 188 (M⁺+1). 9, colorless needles from isopropanol, mp 154-155°C. IR (CHCl₃): 1750 cm⁻¹ (C=0). 1 H-NMR (CD₃OD) δ : 1.6-2.5 (m, 4H), 2.55 (m, 2H), 3.83 (s, 3H), 3.8 (m, 1H), 4.43 (t, \underline{J} =7.5 Hz, 1H). MS (CI) $\underline{m}/\underline{z}$: 188 (M⁺+1). Anal. Calcd. for $C_{8}H_{13}NO_{4}$: C, 51.33; H, 7.00; N, 7.48. Found: C, 51.54; H, 7.03; N, 7.78.

3.5-trans-3-Methoxycarbonyl-1-carbapenam (10) --- A solution of $\underline{9}$ (133 mg, 0.71 mmol), PPh₃ (223 mg, 0.85 mmol), and (PyS)₂ (187 mg, 0.85 mmol) in CH₃CN (100 ml) was refluxed for 8 h. After being cooled, the solvent was evaporated to give a residual mass which, on chromatographic separation by elution with benzene-acetone (20 : 1), gave 62 mg (52%) of $\underline{10}$ as a colorless oil. IR (neat): 1765, 1742 cm⁻¹ (C=0). ¹H-NMR (CDCl₃) &: 2.1-2.6 (m, 4H), 2.65 (dd, \underline{J} =2 Hz, \underline{J} =16 Hz, 1H), 3.16 (dd, \underline{J} =5 Hz, \underline{J} =16 Hz, 1H), 3.74 (s, 3H), 3.7-4.0 (m, 1H), 4.45 (t, \underline{J} =7 Hz, 1H). ¹³C-NMR (CDCl₃) &: 31.1 (t), 35.4 (t), 42.5 (t), 52.4 (d), 53.0 (q), 59.0 (d), 171.8 (s), 176.1 (s). MS $\underline{m}/\underline{z}$: 169 (M⁺).

REFERENCES AND NOTES

- l This work was presented at the 5th Niigata Conference of the Kanto Branch, Yuki Gosei Kagaku Kyokai, Nov. 1984 (Abst. p.54).
- T. Nagasaka, H. Tamano, and F. Hamaguchi, Heterocycles, 1986, 24, 1231.

- Only a few syntheses of 3-alkoxycarbonyl-1-carbapenam from pyrrolidine derivatives have been reported: e.g., a) S. R. Berrghill, T. Price, and M. Rosenblum, J. Org. Chem., 1983, 48, 158. b) M. D. Bachi, R. Breiman, and H. Meshulam, J. Org. Chem., 1983, 48, 1439. c) Synthesis of 3,5-trans-3-p-nitrobenzyloxycarbonyl-1-carbapenam was presented at the 106th Annual Meeting of Pharmaceutical Society of Japan, Chiba, Apr. 1986 (Abst. p.218) by T. Ohta, A. Hosoi, and S. Nozoe (Tohoku University).
- 4 S. W. Queener and N. Neuss, "Chemistry and Biology of β -Lactam Antibiotics", ed. by R. B. Morin and M. Gorman; Academic Press Inc., 1982, Vol 3, p.71.
- 5 S. Peterson and E. Tietze, Chem. Ber., 1957, 90, 909.
- 6 H. Bredereck, G. Simchen, and W. Kantlehner, Chem. Ber., 1971, 104, 924.
- 7 J-P. Célérier, E. Deloisy, G. Lhommet, and P. Maitte, <u>J. Org. Chem.</u>, 1979, <u>44</u>, 3089.
- 8 When $\underline{3}$ was warmed with sodium (1 equiv.) in benzyl alcohol (120 °C, 26 h), the ester ($\underline{11}$) was obtained in 28% yield. Refluxing $\underline{3}$ in benzyl alcohol gave the dibenzyl ester ($\underline{12}$) in 20% yield. $\underline{11}$: Colorless needles (EtOAc-hexane), mp

152-154°C. IR (KBr): 3280 (NH), 1740, 1710 cm⁻¹ (C=0). 1 H-NMR (CDC1 $_{3}$) δ : 1.70 (s, 6H), 2.20-2.60 (m, 2H), 3.25-3.60 (m, 2H), 4.45-4.80 (m, 1H), 5.20 (s, 2H), 7.45 (s, 5H), 10,40 (br s, 1H). MS m/z: 345 (M⁺). Anal. Calcd. for $C_{18}H_{19}NO_{6}$: C, 62.60; H, 5.55; N, 4.06. Found: C, 62.18; H, 5.51; N, 4.08. 12: Colorless needles (hexene), mp 83-85°C. IR (KBr): 3290 (NH), 1710 cm⁻¹ (C=0). 1 H-NMR (CDC1 $_{3}$) δ : 2.05-2.80 (m, 4H), 4.25-4.45 (m, 1H), 5.10 (s, 2H), 5.18 (s, 2H), 7.30 (s, 10H), 8.15 (br s, 1H). MS m/z: 351 (M⁺). Anal. Calcd. for $C_{21}H_{21}NO_{4}$: C, 71.78; H, 6.20; N, 3.99. Found: C, 71.60; H, 5.86; N, 3.83.

Gatalytic hydrogenation (on palladium-carbon or platinum oxide) of $\underline{3}$ with acid (hydrochloric acid and/or acetic acid) was attempted for the direct synthesis of amino acids ($\underline{8}$ and $\underline{9}$), but resulted in failure. A reaction of $\underline{4}$ with sodium borohydride in methanol gave the di-ester ($\underline{13}$) in 38% yield. The catalytic

hydroganation of $\underline{4}$ on 5% palladium-carbon in methanol under 3 atm hydrogen pressure gave the <u>cis</u>-5-methylproline ester ($\underline{14}$) in 58% yield, which is described as hydrochloride in the literature (C. G. Overberger, K. H. David,

and J. A. Moore, <u>Macromolecules</u>, 1972, <u>5</u>, 368). <u>13</u>: Colorless oil. ¹H-NMR (CDCl₃) δ : 1.80-2.20 (m, 2H), 2.45-2.70 (m, 2H), 3.30-4.40 (m, 1H), 3.58 (s, 6H), 4.50 (s, 1H), 8.00 (br s, 1H). <u>14</u> (HCl salt): mp 176-177°C (acetone) [lit. mp 176°C (dec)]. ¹H-NMR (CDCl₃) δ : 1.60 (d, <u>J</u>=6 Hz, 3H), 2.05-2.55 (m, 4H), 3.70-4.10 (m, 1H), 3.81 (s, 3H), 4.30-4.60 (m, 1H), 9.10-10.20 (br s, 1H). ¹³C-NMR (CDCl₃) δ : 17.64 (q), 27.79 (t), 30.96 (t), 53.39 (q), 56.91(d), 59.21 (d), 169.3 (s). MS (CI) <u>m/z</u>: 144 (M⁺+1). <u>Anal</u>. Calcd. for C₇H₁₃NO₂·HCl: C, 46.80; H, 7.85; N, 7.80. Found: C, 46.84; H, 7.81; N, 7.90.

When $\frac{7}{2}$ (cis-, trans-mixture) was subjected to tert-butyloxycarbonylation at the 1-position, unreacted trans- $\frac{7}{2}$ was recovered and from which, amino acid ($\frac{9}{2}$) was obtained by catalytic hydrogenation. The N-benzylation of $\frac{7}{2}$ (mixture) afforded trans- and cis-products ($\frac{15}{2}$ and $\frac{16}{2}$) in 24 and 46% yields, respectively. Each could be separated by column chromatography. The catalytic hydrogenation of $\frac{15}{2}$ and $\frac{16}{2}$ failed to give amino acids ($\frac{8}{2}$ and $\frac{9}{2}$), but acids ($\frac{17}{2}$ and $\frac{18}{2}$) were obtained in 23 and 51% yields, respectively. The stereochemistry

PhCH₂Br, i-Pr₂NH

EtOH

N

COOCH₃

CH₂

ROOC

Ph

ROOC

ROOC

$$\frac{15}{17}$$

R = P-NO₂C₆H₄CH₂ (24%)

 $\frac{16}{18}$

R = P-NO₂C₆H₄CH₂ (46%)

of these compounds was determined by the benzylation of trans-9 to 17. 15:

yellow oil. IR (CHCl₃): 1725 cm⁻¹ (C=0). ¹H-NMR (CDCl₃) δ : 1.62-2.42 (m, 4H), 2.20-2.80 (m, 2H), 3.55 (m, 2H), 3.65 (s, 3H), 3.71 (d, \underline{J} =13.5 Hz, 1H), 3.95 (d, \underline{J} =13.5 Hz, 1H), 5.17 (s, 2H), 7.27 (s, 5H), 7.46 (d, \underline{J} =8 Hz, 2H), 8.17 (d, \underline{J} =8 Hz, 2H). MS (CI) $\underline{m}/\underline{z}$:413 (M⁺+1) $\underline{16}$: Yellow oil. IR (CHCl₃): 1725 cm⁻¹ (C=0). ¹H-NMR (CDCl₃) δ : 1.60-2.15 (m, 4H), 2.25-2.80 (m, 2H), 3.30 (m, 2H), 3.50 (s, 3H), 3.72 (d, \underline{J} =13.5, Hz, 1H), 3.88 (d, \underline{J} =13.5 Hz, 1H), 5.17 (s, 2H), 7.27 (s, 5H), 7.47 (d, \underline{J} =8 Hz, 2H), 8.17 (d, \underline{J} =8 Hz, 2H). MS (CI) $\underline{m}/\underline{z}$: 413 (M⁺+1). $\underline{17}$: ¹H-NMR (CDCl₃) δ : 1.65-2.65 (m, 4H), 2.60 (m, 2H), 3.70 (s, 3H), 3.7 (m, 2H), 3.83 (d, \underline{J} =12 Hz, 1H), 4.05 (d, \underline{J} =12 Hz, 1H), 7.30 (s, 5H), 10.55 (s, 1H). $\underline{18}$: ¹H-NMR (CDCl₃) δ : 1.60-2.30 (m, 4H), 2.55 (m, 2H), 3.23 (m, 1H), 3.50 (s, 3H), 3.55 (m, 1H), 3.70 (d, \underline{J} =12 Hz, 1H), 4.0 (d, \underline{J} =12 Hz, 1H), 7.3 (s, 5H), 12.68 (s, 1H).

- 11 S. Kobayashi, T. Iimori, T. Izawa, and M. Ohno, <u>J. Am. Chem. Soc.</u>, 1981, <u>103</u>, 2406.
- In the literature $(3\underline{a})$, a mixture of $3,5-\underline{cis}-$ and $3,5-\underline{trans}-3-$ methoxycarbonyl-1-carbapenams is described accompanying with the complete ^1H-NMR spectrum of only the $\underline{trans}-$ isomer $(\underline{10})$. The stereochemical assignments are made by comparison of the ^1H-NMR spectrum of the product with those of the related stereo-isomeric benzyl and $\underline{tert}-$ butyl esters (S. M. Schmitt, D. B. R. Johnston, and B. G. Christensen, \underline{J} . Org. Chem., 1980, $\underline{45}$, 1135) and the $\underline{trans}-$ form $(\underline{10})$ is suggested to be a more stable isomer by the thermodynamically controlled experiments.

Received, 16th April, 1986