SYNTHESIS OF THE ENANTIOMERS OF 7.8-DIMETHOXY-2-PHENYL-1,2,4,5-TETRAHYDRO-3-BENZAZEPINE¹

Jürg R. Pfister

Institute of Organic Chemistry, Syntex Research

Palo Alto, California 94304, U.S.A.

<u>Abstract</u> - The chiral 2-phenyltetrahydro-3-benzazepines (R)-8 and (S)-8 were prepared from optically active O-acetylmandeloyl chlorides utilizing a ring closure/ring opening strategy.

The antihypertensive agent fenoldopam² and the tranquilizer trepipam³ (former USAN name: trimopam) are representatives of the well documented⁴ class of compounds based on the readily accessible 7,8-dioxygenated 1-aryltetrahydrobenzazepine structure <u>1</u>. Due to our interest in the biological activity of the corresponding 2-isomers <u>2</u>, which have not received as much atten-

tion, we wanted to develop a fairly general synthetic approach to these compounds. Since, as is the case for fenoldopam⁵, the individual isomers of chiral pharmacological agents often display diverse activity profiles, a particular goal of this endeavor had to be enantioselectivity. Approaches to $\underline{2}$ described in the literature^{4,6} have invariably led to racemates.

The synthetic plan, for which the experimental details were first worked out in the racemic series, is depicted in Scheme I. Schotten-Baumann type acylation of homoveratrylamine with O-acetylmandeloyl chloride (two-phase system, AcOEt/aq. NaHCO $_3$, 0 °C \rightarrow R.T., 2 h) produced the acetoxy amide $\underline{4}$ (mp 102-103°C, 82%

yield) 7 . This compound was subjected to a Bischler-Napieralski cyclization using conditions originally reported by Schöpf 8 (2.5 equiv. PCl $_5$, CH $_2$ Cl $_2$, O°C, 3 h). Reduction of the resulting crude imine with NaBH $_4$

Scheme I

COCI
$$\stackrel{a}{\longrightarrow}$$
 MeO $\stackrel{h}{\longrightarrow}$ MeO $\stackrel{h}{\longrightarrow}$ MeO $\stackrel{h}{\longrightarrow}$ MeO $\stackrel{h}{\longrightarrow}$ NAc $\stackrel{d}{\longrightarrow}$ 3 4 5

Reagents: a) homoveratrylamine, NaHCO $_3$ b) PCl $_5$ c) NaBH $_4$ d) KOH e) Ph $_3$ P, DEAD f) H $_2$, RaNi

(EtOH, 18 h) directly produced amide $\underline{5}$ (mp 139-140°C, 88% yield) as a result of $O \rightarrow N$ acyl migration. Alkaline hydrolysis of $\underline{5}$ (KOH, EtOH, reflux, 6 h) gave the amino alcohol $\underline{6}$ (mp 131-134°C, 60% yield), which formed aziridine $\underline{7}$ (mp 94-95°C, 72% yield) under Mitsunobu conditions with concomitant inversion of stereochemistry at C_2 . Selective hydrolysis of the more activated C_1 -N bond (H_2 , RaNi, MeOH, 1 atm.) provided the racemic target compound $\underline{8}$ (HCl salt, hemihydrate, mp 172-174°C, 82% yield).

Application of this methodology to the chiral case (Scheme II) started with (R)-O-acetylmandeloyl chloride¹², which was converted into acetoxy amide

Scheme II

Reagents: see Scheme I

 $(R)-\underline{4}$ (mp 98-99°C, $[\alpha]_D$ -64.7° 18) as described above. Bischler-Napieralski cyclization of $(R)-\underline{4}$ was followed by treatment of the resulting imine with NaBH $_4$ and deacylation of the reduction product without isolating the latter by simply adding aqueous KOH to the reaction mixture. The resulting amino alcohol $(S)-\underline{6}$ (mp 120-124°C, $[\alpha]_D$ +51.4°, 80% yield for the combined steps) was then cyclized to the aziridine $(R)-\underline{7}$ (mp 93-96°C, $[\alpha]_D$ -26.4°), which gave the chiral benzazepine $(R)-\underline{8}$ (HCl salt, mp 188-192°C, $[\alpha]_D$ -25.4°) on hydrogenolysis. Assignment of the absolute configuration of $(R)-\underline{7}$, and therefore of $(R)-\underline{8}$, rests on the closely related conversion of (-)-erythro-ephedrine to the known (+)-trans-1,2-dimethyl-3-phenylaziridine. 10

Conversely, (S)-0-acetylmandeloyl chloride¹² was converted into the benzazepine (S)-8 (HCl salt, mp 183-190°C, $\left[\alpha\right]_D$ +26.2°) via the intermediates (S)-4 (mp 99-100°C, $\left[\alpha\right]_D$ +67.4°), (R)-6 (mp 120-122°C, $\left[\alpha\right]_D$ -49.8°), and (S)-7 (mp 88-89°C, $\left[\alpha\right]_D$ +27.0°) (Scheme III). The rather high optical

rotations observed for $(S)-\underline{6}$. $(R)-\underline{7}$. $(R)-\underline{6}$, and $(S)-\underline{7}$ suggest that the borohydride reduction of the imine could have been subject to asymmetric induction \underline{via} complexation of the reducing agent with the chiral α -hydroxybenzyl moiety,

Scheme III

Reagents: see Scheme I

with the result that these compounds could be single diastereomers.

Since resolvable α -hydroxy acids are readily obtained by hydrolysis of cyanohy- drins derived from aldehydes, the methodology described herein should provide access to a wide variety of chiral 2-substituted tetrahydro-3-benzazepines.

REFERENCES AND NOTES

- Contribution No. 714 from the Institute of Organic Chemistry.
- F.R. Pfeiffer, J.W. Wilson, J. Weinstock, G.Y. Kuo, P.A. Chambers, K.G. Holden, R.A. Hahn, J.R. Wardell, Jr., A.J. Tobia, P.E. Setler, and H.M. Sarau, J. Med. Chem., 1982, 25, 352.
- A. Barnett, R.I. Taber, and S.S. Steiner, <u>Psychopharmacologia</u>, 1974,
 36, 281.
- 4. S. Kasparek, Adv. Hetercycl, Chem., 1974, 17, 45.
- D.M. Ackerman, A.L. Blumberg, J.P. McCafferty, S.S. Sherman, J.
 Weinstock, C. Kaiser, and B. Berkowitz, <u>Fed. Proc.</u>, 1983, <u>42</u>, 186.

- H. Schmidhammer, R. Eigenmann, and W. Klötzler, <u>Eur. J. Med. Chem. -</u>
 <u>Chim. Ther.</u>, 1980, <u>15</u>, 151; S. Smith, Jr., V. Elango, and M. Shamma, <u>J. Org. Chem.</u>, 1984, <u>49</u>, 581.
- Yields refer to recytstallized compounds which exhibited satisfactory spectral and elemental analyses.
- 8. C. Schöpf, H. Perrey and I. Jäckh, Liebig's Ann. Chem., 1932, 497, 47.
- J. Bäckvall and S.E. Byström, <u>J. Org. Chem.</u>, 1982, <u>47</u>, 1126 and references cited therein.
- J.R. Pfister, <u>Synthesis</u>, 1984, 969; C.R Hall and N.E. Williams, <u>J. Chem. Soc. Perkin Trans. I</u>, 1981, 2746.
- 11. O. Mitsunobu, M. Wada, and T. Sano, J. Am. Chem. Soc., 1972, 94, 679.
- 12. E.G. Breitholle and C.H. Stammer, <u>J. Org. Chem.</u>, 1974, <u>39</u>, 1311.
- 13. All $[\alpha]_D$ values were determined in MeOH.
- 14. Unless indicated otherwise, yields in the chiral sequences were comparable to those in the racemic sequence.

Received, 4th April, 1986