ADDITION OF 2(1H)-PYRIDINETHIONE TO 3,4-DIHYDRO(2H)-PYRAN+

Hari Babu Mereyala

National Chemical Laboratory, Poona 411008, India

Abstract - The title reaction gave [tetrahydro-2H-pyran-2'-y1]-2-thiopyridine (5) rather than 1-tetrahydropyranyl-2-pyridine thione (6) as was earlier reported.

Protonated pyridine-2-thiyl group is an excellent leaving group. Synthetic utility of this group was demonstrated in performing glycosidation² and macrolactonization³ reactions under very mild conditions. Thiopyridyl ethers and esters required for such transformations are generally made either from their corresponding hydroxy or the halogenated compounds using 2,2'-dithiodipyridine- R_3P and 2-mercaptopyridine-KOH², respectively^{3,7}.

In a programme to find new and simpler methods of preparing such thiopyridyl compounds, addition of 2(1H)-pyridinethione ($\underline{2b}$) to 3,4-dihydro(2H)pyran ($\underline{1}$) was tried (Scheme).

The reaction between $(\underline{1})$ and $(\underline{2b})$ (equimolar, CH_2Cl_2 , cat. PTSA, reflux 20 min) gave $(\underline{5})$ in 42% yield. This observation is contrary to the report of Wagner et al., 1

where $(\underline{6})$ was reported to have been formed, when $(\underline{1})$ and $(\underline{2b})$ were reacted (equimolar, C_6H_6 -DMF, cat. PTSA, 70-80°C, 4 h). Due to this discrepancy Wagner's procedure was repeated. But the compound isolated was found to be $(\underline{5})$. Likewise, the reaction of $(\underline{1})+(\underline{2a})$ (equimolar, C_6H_6 -DMF, cat. PTSA, 70-80°C, 4 h) of the same authors was also repeated and it gave $(\underline{4})$ as was reported. In either reaction, $(CH_2CI_2 \text{ or } C_6H_6$ -DMF, cat. PTSA) compounds $(\underline{3})$ and $(\underline{6})$ were not found even as minor compounds.

Though extensive investigations have been carried out and reviewed on the addition reactions 1b , 4 of heterocyclic compounds, which exhibit prototropic tautomerism, 5 , 6 enough evidence was not presented on the structure of the reaction products specially when X = 0 or S as in (2a) and (2b). Hence, a systematic structure elucidation is presented here to distinguish between pairs (3), (4) and (5), (6), together with published data for other reference compounds (Table).

Structure elucidation of compound $(\underline{4})$: In a similar way, appearance of H-5 at 67.74 (most downfield signal) in the PMR (entry I), a strong IR absorption at 1655 cm^{-1} and a very characteristic UV [228(5996), 302 (5280)] (entry I) confirm the formation of compound $(\underline{4})$ in the reaction between $(\underline{1})$ and $(\underline{2a})$. 13 C-Data (entry I and II) is not particularly useful in this case to dinstinguish structures $(\underline{3})$ and $(\underline{4})$. Conformation of $(\underline{4})$ at C-2' is again based on the comparison of the chemical shift value and coupling constants.

TABLE

ENTRY	COMPOUND	1 _{H-NMR} (ppm, CDCl ₃)	13C(ppm, CDC1 ₃)	UV(MeOH) \(\lambda\) max,nm(\(\mat{\x}\))	$IR(\mathcal{V} \text{ cm}^{-1}, \text{CHCl}_3)$	Ref.
I	N-Methyl- 2-pyridone	3.55(s,3H,N-CH ₃),6.15(t,H-5), 6.57(d,H-3),7.30(m,2H,H-4&H-6).	41.8(q,N-CH ₂),104.8,119.1, 139.5, 139.5(4d,C-5,3,4,6), 161.8(s,C-2).	226(6100), 297(5700).	3030(w),1665(s),1585(s), 1535(s),1315(m),1150(m), 1050(m),870(m),	9, 8, 10,13
II	2-Methoxy- pyridine	3.90(s,3H,OCH ₃),6.63-6.92(m,2H, H-3&H-5),7.36-7.67(m,H-4),8.19 (m,H-6).	60.9(q,OCH ₃),111.0,116.7, 138.3(3d,C-4,5,3),147.4 (d,C-6),164.9(s,C-2).	269(3230)	3020(w),1590(s),1560(s), 1430(s),1315(s),1280(s), 1260(s),1040(s), 775(s).	10,13, 14
III	1-Methyl- 2-(lH)- pyridine- thione	3.99(s,3H,N-CH ₃),6.63(m,H-5),7.18 (m,H-4),7.61(m,H-3),7.70(m,H-6).	46.0(q,N-CH ₃),134.1,135.8, 141.0(3d,C-3,4,6),180.2 (s,C-2).	281(13600), 351(7040).	3010(w),1610(m),1540(s), 1410(s),1135(s),1110(s), 750(s).	14,15, 16
IV	2 - Methyl- thio- pyridine	2.61(s,3H,S-CH ₃)7.10(m,H-5), 7.25(m,H-3),7.60(m,H-4),8.58(m,H-6).	13.2(q,S-CH ₃),119.0,121.4, 135.7,149.3(4d,C-5,3,4,6), 159.9(s,C-2).	-	-	8, 12, 15
V	2,2'- Dithiodi- pyridine	7.09(m,2H,H-5,5'),7.60(m,4H,H-3,3'& H-4,4'),8.42(m,2H,H-6,6').	119.6,121.1,137.3(3d,C-3,3' C-4,4',C-5,5'),149.5(d,C-6, 6')158.8(s,C-2,2').		3030(w),1565(s),1450(s), 1425(s),1150(m),1110(m), 1040(m), 990(m), 775(s).	13,16
VI	(<u>4</u>)	a _{1.50-2.40} (m,6H,-CH ₂ -pyrany1),3.52- 3.91(m,H-6'),4.10-4.30(m,H-6'), 5.94(d x d,H-2',J ₁ =9.88,J ₂ =2Hz), 6.24(d x d,H-5,J ₁ =6.84,J ₂ =2Hz), 6.55(d x d,H-3,J ₁ =9.5,J ₂ =2Hz), 7.30(d x d x d,H-4,J ₁ =9.5,J ₂ =6.84, J ₃ =2.28Hz),7.60(d x d,H-6,J ₁ =6.84, J ₂ =2.28Hz).	b 22.8,25.2,31.9(3t,C-3', C-4'.C-5')69.1(t,C-6'), 82.5(d,C-1'),106.1,120.4, 133.0,139.4(4d,C-3,C-4,C-5, C-6),161.5(s,C-2).	228 (5996), 302 (5280).	3080(w),2920(m),1660(s), 1580(s),1530(s),1440(w), 1290(m),1250(s),1200(m), 1180(s),1140(m),1090(s).	
VII	(<u>5</u>) ^c	a1.60-2.20(m,6H,CH ₂ -pyranyl),3.66 (d x d x d,H-6',J ₁ =12,J ₂ =11,J ₃ =5Hz), 4.11(d x d x d,H-6',J ₁ =12,J ₂ =7,J ₃ =5Hz), 5.94(d x d,H-2',J ₁ =6,J ₂ =4Hz),7.00(d x d x d,H-4,J ₁ =7,J ₂ =5,J ₃ =1Hz),7.29(d x d x d,H-2,J ₁ =8,J ₂ =J ₃ =1Hz),7.50(d x d x d,H-3,J ₁ =8,J ₂ =7,J ₃ =1.9Hz),8.44 (d x d x d,H-5,J ₁ =5,J ₂ =1.9,J ₃ =1).	b 21.5,25.5,31.4(3t,C-3',C-4' C-5'),64.4(t,C-6'),81.8(d,C 2').120.0,122.9,136.3,149.5 (4d,C-3,C-4,C-5,C-6),158.3 (s, C-2).	, 245(9032), - 287(4283).	3040(w),2940(s),2850(m), 1570(s),1550(s),1445(s), 1550(s),1445(s),1410(s), 1330(m),1280(m),1120(s), 1100(s),1070(s),1030(s), 1000(s),890(m).	

a) Brucker, WH-90FT(90MHz); b) 22.63 MHz; c) bp 95°C/0.01 Torr; Elemental analysis: Found C, 6152; H, 6.88; N, 7.01; S, 16.65. C₁₀H₁₃ NOS requires C, 61.51; H, 6.71; N, 7.17; S, 6.41%.

[§] Entries I to V; data have been previously reported.

Formation of $(\underline{4})$ and $(\underline{5})$ thus indicates a reversal in the chemical reactivity 11 , in the addition reactions of 2-hydroxy and 2-mercaptopyridines $(\underline{2a})$ and $(\underline{2b})$ to 3,4-dihydro(2H)pyran $(\underline{1})$. Based on the above observation it would appear necessary to check the several alkylations reported 1 on heterocyclic bases.

REFERENCES

*NCL Communication No. 4044

- 1. a) H. Kuhmstedt and G. Wagner, Arch. Pharm., 1968, 301, 660.
 - b) "Heterocyclic Compounds" Vol. 14, Suppl. Part 3, ed by R. A. Abramovitch, John Wiley & Sons, Inc., 1974, p.756 and references cited therein.
- 2. S. Hanessian, C. Bacquet and N. Lohong, Carbohydr. Res., 1980, 80, C17.
- 3. E. J. Corey and K. C. Nicolaou, J. Am. Chem. Soc., 1974, 96, 5614.
- 4. a) H. Kuhmstedt and G. Wagner, Arch. Pharm., 1969, 302, 213.
 - b) N. Takahayashi, J. Pharm. Soc. Jap., 1956, 76, 1296.
 - c) K. Eichenberger, R. Rometsch and J. Druey, Helv.Chim.Acta, 1956, 39, 1755.
 - d) E. Spinner, J. Chem. Soc., 1960, 1237.
- 5. "Heterocyclic Compounds", Special topics in heterocyclic chemistry, Vol. 30, ed. by A. Weissberger and E.C. Taylor, John Wiley & Sons, Inc., 1977, p.99.
- 6. "Heterocyclic Compounds" Vol. 28, ed. by R.N. Castle, John Wiley & Sons, Inc., 1973, pp. 756-779.
- 7. Peter G. M. Wuts and Sean S. Bigelow, J. Org. Chem., 1983, 48, 3492.
- 8. I. W. J. Still, N. Plavac, D. M. McKinnon and M. S. Chauhan, <u>Can. J. Chem.</u>, 1976, 54, 280.
- 9. P. W. Von Ost Walden and J. D. Roberts, J. Org. Chem., 1971, 36, 3792.
- 10. S. F. Mason, J. Chem. Soc., 1959, 1253.
- 11. P. Beak and J. T. Lee Jr., <u>J. Org. Chem</u>., 1969, <u>34</u>, 2125.
- 12. C. Djerassi and G. R. Pettit, J. Am. Chem. Soc., 1954, 76, 4470. [2-Ethylthiopyridine, UV(EtOH), λ max, nm(ξ), 250(7943), 293(3467)].
- 13. "The Aldrich Library of Infrared Spectra", ed. III, 1981, C. J. Pouchert.
- 14. a) L. Stefaniak, Tetrahedron, 1976, 32, 1065.
 - b) V. Vogeli and W. von Philipsborn, Org. Mag. Res., 1973, 5, 551.
 - c) C. J. Turner and G.W.H. Cheeseman, <u>ibid</u>., 1974, <u>6</u>, 663.
- 15. G. B. Barlin and J. A. Benbow, J. Chem. Soc. Perkin II, 1974, 790.
- 16. 'Sadtler Research Laboratories Inc' 1981.

Received, 6th May, 1986