PSEUDOESTERS AND DERIVATIVES. XXIV¹.

1,3-DIPOLAR CYCLOADDITION OF DIAZOMETHANE
TO 5-METHOXYFURAN-2(5H)-ONES

Francisco Fariña*, M. Victoria Martín, and Félix Sánchez

Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain

Abstract - Cycloaddition of diazomethane to 5-methoxyfuran-2(5H)-ones (1) occurs in a practically regiospecific manner to give the expected adducts. The cycloadducts are mixtures of the furopyrazoline derivatives 2 and 3 epimeric at C-4, with the exception of those of 1f and 1h that afford only one detectable adduct (2f and 2h) in each case. The regio-and stereo-chemistry of the adducts follows from the 1H-NMR data. The regio-chemistry of the cycloaddition is also corroborated by chemical correlations. Pyrolysis of the epimeric mixtures 2a/3a, 2b/3b and 2d/3d affords the 4-methyl substituted furanones 1c, 1i and 1j in good yields.

Earlier parts of this series have examined several aspects of the chemistry and synthetic potential of 3-formylacrylic acid derivatives. Thus, the Diels-Alder reaction of cyclic pseudoesters of 3-formylacrylic acids [5-alkoxyfuran-2(5H)-ones] has already been reported ²⁻⁵. We extend now these studies to 1,3-dipolar cycloaddition reactions with 5-methoxyfuran-2(5H)-ones which could provide a convenient route for the synthesis of new fused heterocyclic systems.

It is the purpose of the present work to study the cycloaddition of diazomethane to furanones of type 1. The reaction is explored with differently substituted derivatives 1a-i in order to obtain information on the influence of the substituents X and Y upon the reactivity and regional ectivity of the reaction. Moreover, the selectivity of the cycloaddition to the diastereotopic faces of the methoxyfuranones 1 is also considered. Finally, several transformations effected on the adducts not only confirm the regionemistry of cycloadditions but also can be used with preparative purposes.

Results and discussion

Treatment of furanones 1a-h with excess of ethereal diazomethane afforded the expected cycloadducts 2 and/or 3 in essentially quantitative yield, with the exception of 1c which, after 45 days, gave only a partial conversion. In contrast, furanones 1i, j after 60 days in the presence of the 1,3-dipole were recovered unchanged and no trace of cycloaddition product could be detected.

Substrate	х	Y	z	Time ^a	Product b			
				(days)	2	$\hat{3}$	Isolation	
1a	Н	Н	н	0.5	30	70	A	
ĵģ	CH ₃	H	Н	20	60	60 40		
ļç	н	CH ₃	Н	45 ^d	50	50	В	
1d	H	н	СН ₃	15	89	8 ^e	В	
le.	Br	Н	н	3	65	35	C -	
1 <u>f</u>	Н	Br	H	10	100	0		
1g	C1	H	H	7	70	30	C	
1h	Н	C1	H	15	100	0	_	
ļį	CH ₃	СН ₃	H	- t	-	-	-	
<u>l</u> j	н	CH ₃	CH ₃	- ^f	-	-	-	

Table 1. Cycloaddition of diazomethane to 5-methoxyfuran-2 (5H)-ones 1.

The results of these reactions are summarized in Table 1. The reaction was practically regio-specific and led to the adducts 2 and/or 3, epimeric at C-4, in which the C atom of the dipole became attached to the electron defficient 4-position of the furanone 1. The cycloaddition of the diazoalkane occurred in the expected direction, in accord with the early von Auwers rule 6 and with the previously reported 7,8 behaviour of related lactones.

The presence of methyl substituents at the 3- or 4-position decreases the reactivity compared with the unsubstituted case, the effect being larger for the 4-substituted derivative. Comparable results have previously been reported for acrylic acid derivatives ^{9,10}. A similar effect was observed for the 3- and 4-halo derivatives, although the reaction with halofuranones ½e-h proceeds at a rate somewhat faster than the formation of the cycloadducts from the respective methylfuranones ½b,c.

A simple semiquantitative FMO approach has been performed in order to rationalize the experimental results. The observed regionselectivities of the 1,3-dipolar cycloaddition of diazomethane to the furanones la-h are in good agreement with those predicted from the FMO approach. Thus,

a Time required for a total conversion. b Relative product distribution (%) (¹H-NMR). c A: Column chromatography on silica gel (benzene-ethyl acetate 2:1); B: Column chromatography on silica gel (benzene-ethyl acetate 4:1); C: Different solubility in benzene. d Only a partial conversion (ca. 50%) is attained in 45 days. e The presence of a regioisomer to the extent of 3% was also detected (¹H-NMR). f No reaction after 60 days.

the stabilization energy (ΔE) calculated for the approach of the dipole and dipolarophile leading to regioisomers of the type A is, in each case, greater than that for the alternative orientation B (Table 2). The FMO approach also allows to explain the electronic effects of the substituents on the reactivity of the different furanones. From the inspection of Table 2, a direct relationship between the stabilization energy differences ($\Delta \Delta E$) and the experimental results (Table 1) is deduced. The disagreements observed for the 3- and 4-substituted furanones, that show a decreased reactivity compared with the theoretical values and with the unsubstituted case, disclose the importance of steric factors of the substituents, not considered in the FMO method.

The cycloaddition to the parent furanone <code>la</code> occurs preferentially from the side opposite to the OCH₃ group, sterically less hindered. However, the results summarized in Table 1 suggest that both steric and electronic effects of the substituents play a significant role and their influence on the stereoselectivity of the reaction is difficult to rationalize.

Table 2. Stabilization energies (kcal/mol) of cycloaddition of diazomethane to furanones 1

Furanone	ΔE_{A}	ΔE_{B}	ΔE_A - ΔE_B		
la	45.43	41,41	4, 02		
1b	44.17	40.47	3.70		
1 c	43,75	39.96	3.79		
<u>1d</u>	45.08	40.90	4,18		
lg	50.71	44.69	6.03		
1h	44,62	43.79	0,83		
1i	39.27	38,40	0.87		
1 j	43.37	39.47	3, 90		

The structure of the adducts was established on the basis of their spectral data. Thus, the presence of bands approximately at 1780 (C=O) and 1550 (N=N) and the absence of bands over $3000~{\rm cm}^{-1}$ (N-H) in the IR spectra of 2 and 3 are indicative of the existence of γ -lactone and Δ^1 -pyrazoline moieties. The regionsomeric assignments could be made from a detailed study of their 1 H-NMR spectra. Additional confirmation of the regionsomerity was obtained from the results of chemical transformations discussed below.

Although the assignment of stereochemistry in pentacycles is often difficult, the cycloadducts 2 and 3 show a relatively rigid fused system in which a correlation is possible. Thus, the stereochemistry was assigned from the ¹H-NMR data on the basis of the following observations (Table 3):

(i) Compounds in which Y = Z = H display coupling constants $J_{Y,Z} = 6.5 - 6.8$ Hz for a <u>cis</u> arrangement of these protons (<u>endo</u> MeO group, <u>2</u>). In contrast, for a <u>trans</u> relationship of the protons (<u>exo</u> MeO groups, <u>3</u>) vicinal coupling constants $J_{Y,Z} = 1.6 - 2.0$ Hz are observed.

- (ii) The H-3 $_{\rm x}$ and H-6a protons are considerably deshielded by the anisotropy effect of an $\underline{\rm exo}$ MeO group. Moreover, an $\underline{\rm endo}$ MeO group causes a large deshielding on the H-3 $_{\rm n}$ proton.
- (iii) The signals of endo groups at C-4 are shielded by the anisotropy effect of the N=N double bond. Thus, the resonances of the protons and substituents are shifted to higher field. In fact, a comparison of the values for the C-4 epimers is consistent with the above assignments.

Table 3. H-NMR chemical shifts and coupling constants of adducts 2 and 3

Adduct	H-3 _x	H-3 _n	х	Y	Z	ОМе	J _{Y,Z}	J _{Y,X}	^J Y,3 _x	^J Y, 3 _n	^J x,3 _x	$J_{X,3}^{\star}$	^J 3 _x , 3 _n
2a	3.64	4,77	4, 86	2.17	4.54	2.87	6.8	9.2	8. 8	2,0	-2.3	-2,4	-18.1
3a	4.02	3.98	5.09	2.01	4.21	3,03	1.8	9.2	8.0	5.9	-1.8	-2. 2	-18.9
2b	3.94	5.05	(1,36)	2.10	4.76	3.03	6.6	-	8.0	1.8	-	-	-18.2
3b	4.23	4.09	(1,51)*	1.89	4.29	3.10	1.6	-	9.5	4.2	-	-	-18.9
2c	4,15	5.04	4.87	(0,53)+	4.54	2.90	-	-	-	-	-2,3	-1.7	-18.4
3c	4.25	4,03	5.01	(0,66)+	4, 49	3.09	-	-	*	-	-0.8	-2, 2	-18.6
2d	3.85	5,10	5.17	2,29	(1.02)*	2,76	-	9.7	8.3	2.5	-1.9	-2.2	-18.0
3ď	4.18	4.32	5,43	2,38	(0.90)+	2.95	-	8.9	10,1	4.4	-1.4	-2.3	-18.9
2e	3.78	4.82	-	2.36	4.39	2,81	6.7	-	7.7	1.5	-	_	-18.9
3e	4.10	4.02	-	2.49	4.19	3,04	2.0	-	9.1	3.1	-	_	-18.8
2f	4.94	5.49	5.59	-	5.75	3,56	-	-	•	-	-1,0	-1.7	-19.7
2g	3,89	4, 86	_	2.39	4.56	2,50	6.5	_	7.4	1.5	-	-	-18.8
3g	4.18	4.04	-	2,38	4,20	2,70	1.8	-	8.8	3,5	-	-	-18.2
2h	4.36	4.89	5.28	_	4.80	2.92	-	_	-	-	-0.9	-0,6	-19.8

^{*} Azahomoallylic coupling constants 12,13 Me signals.

Further confirmation of the regiochemistry of the above cycloadditions was obtained from the results of chemical correlations. Thus, treatment of the halogenated pyrazolines 2e-h and 3e, g with methanolic potassium hydroxide resulted in HCl or HBr elimination and subsequent ring opening to give in all cases methyl 4-formyl-3(5)-pyrazolecarboxylate 4, and a small amount of its corresponding dimethyl acetal 5, identical with authentic samples prepared by an independent route 14.

Furthermore, the reaction of the halogenated cycloadducts 2e,-h and 3e,-g with 2 mol equiv. of methylhydrazine, by dehydrohalogenation followed by condensation, afforded the pyrazolo-

pyridazinone 6, identical with a sample prepared by a different route 15. Finally, the thermal decomposition of the cycloadducts was also studied. Pyrolysis of the epimeric mixtures 2a/3a, 2b/3b, and 2d/3d, by heating at 130°C in chlorobenzene, gave the respective 4-methyl substituted furanones 1c, i, j in good yields, in accord with previous results reported for 2(5H)-furanones 8. It should be noted that cyclopropane derivatives were practically not formed in our case. Therefore this reaction provides a convenient method for introducing an alkyl group at the 4-position of the alkoxyfuranones.

EXPERIMENTAL

Mps are uncorrected. IR spectra were recorded on a Perkin-Elmer, model 257 grating spectrometer, $\bar{\nu}$ values in cm⁻¹. ¹H-NMR spectra on a Varian XL-100/15 spectrometer, in benzene- \bar{d}_6 solutions (unless otherwise stated) using TMS (δ = 0 ppm) as internal reference. Analysis of the spectra were carried out using a LAOCOON HI program running on a Nicolet 1180 computer. Mass spectra were recorded on Hewlett-Packard 5985 GC-M5 System or Hitachi Perkin-Elmer RMU-6 MG spectrometers. Silica gel Merck 60 (70-230 mesh), 60 (230-400 mesh) and DC-Alufolien 60 F $_{254}$ were used for conventional, flash column chromatography and analytical t.l.c, respectively.

The eigenvalues and eigenvectors (energies and coefficients) of FMO of furanones have been obtained from a CNDO/2 program running on a IBM 360/65 computer, using standard bond lengths and dihedral angles. The corresponding values for diazomethane and β values have been taken from Houk 11 .

Cycloaddition of diazomethane to 5-methoxyfuran-2(5H)-ones (1). General procedure

To a solution of the furanone $\frac{1}{2}$ (10 mmol) in diethyl ether (20 ml) was added a solution of diazomethane (20 ml, containing 0.6 mmol/ml). The reaction was kept at -10°C during the period indicated in Table 1. For prolongated reaction times additional portions of diazomethane solution were periodically added. The solvent was removed and the residue was analyzed by 1 H-NMR and purified as indicated in Table 1.

- 2a. Mp 64-56°C (from ethyl acetate-petroleum ether). (Found: C, 46.17; H, 5.09; N, 18.19. Čalcd. for $C_6H_8O_3N_2$: C, 46.15; H, 5.12; N, 17.94). IR (nujol): 1780 (C=O); 1555 (N=N). MS, $\underline{m}/\underline{z}$: 127 (M-29)+, 111, 97, 69, 68, 41 (100).
- 3a. Mp 55-56° C (from ethyl acetate-petroleum ether). (Found: C, 45.90; H, 5.36; N, 17.69. Calcd. for $C_6H_8O_3N_2$: C, 46.15; H, 5.12; N, 17.94). IR (nujol): 1790-1770 (C=O); 1565 (N=N). MS, m/z: 127 (M-29)*, 111, 97, 69, 68, 41 (100).
- 2b. Mp 31-32°C (from chloroform-petroleum ether). (Found: 49.13; H, 5.74; N, 16.39. Calcd. for $C_7H_{10}O_3N_2$: C, 49.41; H, 5.88; N, 16.47). IR (nujol): 1790-1760 (C=O); 1550 (N=N). MS, $\underline{m}/\underline{z}$: 114 (M-56)+, 111, 95, 83 (100), 55.
- 3b. Mp 80-81°C (from chloroform-petroleum ether). (Found: C, 49.12; H, 5.90; N, 16.32. Calcd. for $C_7H_{10}O_3N_2$: C, 49.41; H, 5.88; N, 16.47). IR (nujol): 1780 (C=O); 1560 (N=N). MS, m/z: 114 (M-56) $^+$, 111, 98, 83, 55 (100).
- 2c. Mp 84-85°C (from ethyl acetate-petroleum ether). (Found: C, 49.07; H, 5.97; N, 16.28. Calcd. for $C_7H_{10}O_3N_2$: C, 49.41; H, 5.88; N, 16.47). IR (nujol): 1790 (C=O); 1555 (N=N), MS, $\underline{m}/\underline{z}$: 170 (M+), 113, 111, 97, 95, 83, 82, 55 (100).
- 3c. Mp 74-75° C (from ethyl acetate-petroleum ether). (Found: C, 49.47; H, 5.98; N, 16.40. Calcd. for $C_7H_10O_3N_2$: C, 49.41; H, 5.88; N, 16.47). IR (nujol): 1770 (C=O); 1560 (N=N). MS, $\underline{m}/\underline{z}$: 170 (M+), 113, 111, 97, 95, 83, 82 (100), 55.
- 2d. Mp 56-57° C (from ethyl acetate-petroleum ether). (Found: C, 49.54; H, 6.03; N,16.72. Calcd. for $C_7H_{10}O_3N_2$: C, 49.41; H, 5.88; N, 16.47). IR (nujol): 1780 (C=O); 1550 (N=N). MS, $\underline{m}/\underline{z}$: 170 (M⁺), 142, 127, 111, 99, 97, 83, 68 (100), 43 (100).

From the crude reaction mixture of the cycloaddition of diazomethane to furanone 1d, by column chromatography, were isolated the epimer 3d (8%) and the regionsomeric 3a,6a-dihydro-6-methoxy-6-methylfuro [3,4-d]pyrazol-4(3H)-one. IR (film): 1785 (C=O); 1560 (N=N). 1H-NMR:

4.65 (m, 1H, C-3; $J_{3,3!}$ = -18.0, $J_{3,3a}$ = 2.0, $J_{3,6a}$ = -2.1); 4.40 (m, 1H, C-6a; $J_{6a,3a}$ = 7.6, $J_{6a,3!}$ = -2.5); 3.72 (m, 1H, C-3'; $J_{3!,3a}$ = 9.3); 2.94 (s, 3H, OCH₃); 2.40 (m, 1H, C-3a); 1.54 (s, 3H, CH₃). MS, $\underline{m}/\underline{z}$: 170 (M⁴), 142, 127, 111, 97, 83, 69, 55, 43 (100).

Halogenated adducts decompose spontaneously at room temperature and were only characterized by ¹H-NMR (Table 3).

Dehydrohalogenation of the cycloadducts 2e-h and 3e, g

To a solution of the adduct (5 mmol) in methanol (10 ml) was added methanolic potassium hydroxide (5 ml). The precipitated potassium halide was filtered off and the solvent removed in vacuo. The residue was analyzed by H-NMR and contains as main component methyl 4-formyl-3(5)-pyrazolecarboxylate (4) together with a minor amount of its dimethyl acetal 514. The crude product was chromatographed on silica gel (ethyl acetate-petroleum ether 1:1) to afford the pyrazole 4 in 63% yield.

Reaction of the cycloadducts 2e-h and 3e, g with methylhydrazine

To a solution of the halogenated adduct (20 mmol) in methanol (30 ml) was added methylhydrazine (44 mmol) and the mixture heated under reflux for 15 min. After addition of acetic acid (10 ml) the mixture was heated for 2 h and the solvent removed under reduced pressure. The residue was washed with water to afford, after sublimation, 6-methylpyrazolo [3, 4-d]pyridazin-7(6H)-one(6) in 40% yield, identical with an authentic sample ¹⁵. Mp 246° C. IR (nujol): 3110 (NH); 1665, 1600 (C=O amide). H-NMR (DMSO-d₆): 8.43, 8.30 (2s, 1H, 1H, C-3 and C-4); 3.73 (s, 3H, NCH) NCH₃). MS, $\underline{m}/\underline{z}$: 150 (M⁺), 122, 95, 94, 52.

Thermal decomposition of the cycloadducts 2a, b, d and 3a, b, d

A solution of the isomeric mixture of adducts 2 and 3 (10 mmol) in chlorobenzene (30 ml) was heated under reflux for 48 h. The solvent was removed in vacuo and the residue distilled to afford the corresponding methylfuranone: 4-methyl-5-methoxyfuran-2(5H)-one (1c) 16 in 70% yield from 1a; 3,4-dimethyl-5-methoxyfuran-2(5H)-one (1i) in 85% yield from 1b [(Found: C, 59.11; H, 6.97. Calcd. for $C_7H_{10}O_3$: C, 59.15; H, 6.90). IR (film): 1770 (C=O); 1690 (C=C).

1H-NMR (Cl₃CD): 5.52 (br s, 1H, C-5); 3.53 (s, 3H, OCH₃); 1.96, 1.82 (2 br s, 3H, 3H, CH₃).
MS, m/z: 142 (M⁺), 141, 114, 111, 83, 67, 55 (100)]; 4,5-dimethyl-5-methoxyfuran-2-one (1j)17 in 75% yield from 1d.

ACKNOWLEDGMENT

We thank the Comisión Asesora de Investigación Científica y Técnica for financial support.

REFERENCES AND NOTES

- 1. Part XXIII: F. Fariña, M.C. Maestro, M.R. Martín, M.V. Martín, F. Sánchez and M.L. Soria, Tetrahedron, in press.
- K. Alder and F. Fariña, An. Real Soc. Españ. Fís. Quím., 1958, 54-B, 689.
 F. Fariña, M. Lora-Tamayo and M.V. Martín, An. Real Soc. Españ. Fís. Quím., 1964, 60-B, 715.
- 4. C. Escobar, F. Fariña and J.M. Sañudo, An. Quím., 1971, 67, 43.
- 5. F. Fariña and M. V. Martín, An. Quím., 1971, 67, 315.

- K. von Auwers and O. Ungemach, Ber., 1933, 66, 1205.
 M.N. El Ghandour and J. Soulier, C.R. Acad. Sc., C, 1970, 766.
 S.W. Pelletier, Z. Djarmati, S.D. Lajšic, I.V. Micović and D.T.C. Yang, Tetrahedron, 1975, 31, 1659.
- 9. R. Danion-Bougot and R. Carrié, <u>Bull. Soc. Chim. France</u>, 1972, 263.
 10. L. Fisera, J. Geittner, R. Huisgen and H. U. Reissig, <u>Heterocycles</u>, 1978, 10, 153.
- 11. R.N. Houk, J. Sims, C.R. Watts and L.J. Luskus, J. Am. Chem. Soc., 1973, 95, 7301.
- 12. The negative coupling constants $J_{X,3_X}$ and $J_{X,3_N}$ show the presence of long-range protonproton interactions through the nitrogen-nitrogen double bond, constituting and additional proof for the structure of the adducts 13. The signs of these constants have been established by multiple irradiation experiments on compounds 2c and 3c.

- P. J. Nathan, E. García and E. Díaz, J. Magn. Res., 1973, 9, 378.
 F. Fariña, M.V. Martín and F. Sánchez, An. Quím., 1982, 78-C, 332.
 F. Fariña, M.V. Martín, F. Sánchez and F. Rabadán, Span. Pat. nº 465.117 [C.A., 1979, 90, 152223w].
- 16. G. Pattenden and B. C. L. Weedon, J. Chem. Soc. (C), 1968, 1984.
- 17. H.D. Scharf and H. Seidler, Chem. Ber., 1971, 104, 2995.

Received, 26th May, 1986