DEMETHYLATIONS OF METHOXYPYRIDAZINES WITH AMINES

Hiromu Nagashima*, Hirohisa Oda, Takahisa Hayakawa, and Kenji Kaji Gifu Pharmaceutical University, 5-6-1, Mitahora-higashi, Gifu 502, Japan

<u>Abstract</u> — When various pyridazines possessing the chlorine and methoxy group at 3, 4 and 5-position were treated with 10 eq. of primary and secondary amines, demethylation was observed. Demethylation of 2-methyl-methoxy-3(2<u>H</u>)-pyridazinones was also investigated.

In the course of our studies on the nucleophilic substitution reactions of chloropyridazines, we found the interesting demethylation reaction of chloro-methoxypyridazines with amines. It is well documented that a methoxy group of the methoxypyridazines is replaced by amines.^{1,2} However, demethylation of alkoxychloropyridazines with amines was reported only by Landquist and Meek.³ This paper described demethylation of chloro-methoxypyridazines and 2-methyl-methoxy- $3(2\underline{H})$ -pyridazinones by amines.

When 3,4-dichloro-5-methoxypyridazine (1)¹ was treated with 10 eq. of morpholine, 5-chloro-6-(4-morpholinyl)-4(1H)-pyridazinone (2) and 4-chloro-3,5-di(4-morpholinyl)pyridazine (3) were obtained in 77% and 6% yields, respectively. 4-Methylmorpholine concurrently formed was isolated in 61% yield by vacuum distilation, after an excess of morpholine was treated with phenylisocyanate and removed as a crystalline urea derivative. Reductive dechlorination of 3 gave 3,5-di(4-morpholinyl)-pyridazine (5), whose spectrum showed a pair of duoblets with a meta coupling constant (j=3 Hz) at δ 6.00 and 8.39 ascribed to 4- and 6-H, respectively. Consequently the structure of the product 3 was confirmed. The compound 3 was also derived from 4-(1H)-pyridazinone 2, by chlorination with phosphorus oxychloride leading to 4,5-dichloro-3-(4morpholinyl)-pyridazine (4), followed by substitution of 4 with morphline. This transformation also uneqivocally determined the structures of 2 and 4. The present demethylation proceeded more smoothly under milder conditions than that of Landquist et al.³ (Scheme)

The demethylation of some other chloro-methoxypyridazines with morpholine was futher

-1 -

investigated. Those results are summerized in Table 1. Among the pyridazines examined, dichloro-methoxypyridazines underwent substitution of a chlorine atom and demethylation of a methoxy group to give chloro-morpholinylpyridazinones (run 1-3). Monochloro-dimethoxypyridazines except 4-chloro-3,5-dimethoxypyridazine (Run 6) were demethylated to give chloro-methoxy-4(1<u>H</u>)-pyridazinones, which did not suffer the subsequent demethylation (Runs 4 and 5). The dihydroxypyridazinone was obtained by demethylation of 4-chloro-3,5-dimethoxypyridazine with morpholine (Run 6). However, 3,5-dimethoxypyridazine was not demethylated by morpholine. The results

$\mathbb{N} = \mathbb{N} = \mathbb{N} = \mathbb{N} = \mathbb{N}$									
Run	S	tartir	ıg	Reaction		D	emethy:	lation Produ	icts
	M R ¹	ateria R ²	rls R ³	Time (h)	R ¹	R ²	R ³	mp(°C)	Yield(%)
1	ОМе	C1	Cl ^{a)}	2	он	C1	м	223-224	49 ^c)
2	Cl	OMe	Cl ^{a)}	2	C1	ОН	М	244-245	80 ^c)
3	C1	CT	OMe ^{b)}	2	М	C1	OH	250(dec)	77
4	C1	OMe	OMe ^{b)}	2	C1	OH	OMe	248-249	46 ^{d)}
5	OMe	OMe	Cl ^{a)}	0.5	OMe	он	Cl	240-241	57 ^{e)}
6	ОМе	C1	OMe ^{b)}	2	OH	C1	OH	267-268	79 ^f)

Table 1 Reactions of some Dichloromonomethoxy and Monochlorodimethoxypyridazines with Morpholine at 100 °C

M = -N 0 a):lit.4, b):lit.l. The chloropyridazines prepared by the chlorination of the demethylated products with POCl₃ were identified by direct comparison with authentic samples [c):lit.5, d):lit.l, e):lit.4, f):lit.5]

— 2 —

obtained from Run 4-6 demonstrated that demethylation of chloro-dimethoxypyridazines depends upon the position of a chlorine and a methoxy group: the methoxy group adjacent to a chlorine can be demethylated by morpholine.

The demethylation reaction of 1 with other amines was examined. Reaction with piperizine caused substitution of 3-chlorine and demethylation of 5-methoxy group to afford 5-chloro-6-(1-piperidiny1)-4(1 \underline{H})-pyridazinone in 53% yield together with 4-chloro-3,5-di(1-piperidiny1)pyridazine in 10% yield. in contrast, when pyrrolidine was used, both 3-chlorine and 5-methoxy group were substituted by pyrrolidine. Primary and secondary alkyl amines caused the demethylation reaction of 5-methoxy group to give 5,6-dichloro-4(1 \underline{H})-pyridazinone in moderate yields. Benzylamine and aniline did not react with 1.

Table 2 Reactions of 3,4-Dichloro-5-methoxypyridazine (1) with Amines at 100°C for 2 h.

Run	Amines	mp	Yield	mp	Yield	mp	yield ^{****}
NO	(AH)	(°C)	(%)	(°C)	(%)	(°C)	(1)
1	NH	195(dec)	53 ***	81-83	10***		
2	NH*	210(dec)	2***	136-137	88***		
3	(Et) ₂ NH ^{**}					210(dec)	60
4	NH		····			210(dec)	49
5	n-C ₄ H ₉ NH					210(dec)	62

* Reflux ** Sealed tube *** The products were identified by same manner as illustrated in scheme. '**** The product was proved to be 5,6-dichloro-4(1<u>H</u>)pyridazinone by the convertion into 3,4,5-trichloropyridazine.⁵

The demethylation of 2-methyl-methoxy- $3(2\underline{H})$ -pyridazinones with morpholine was also investigated. The pyridazinones having a chlorine were demethylated in good yields. In the non-chlorinated compounds, 4-methoxy group adjacent to the carbonyl group was demethylated easier than 5-methoxy group.

Table 3 Reaction of 2-Methyl-methoxy-3(2H)-pyridazinones with Morpholine

	41	100	5 101 E H.					
Men R N R 1								
Run	Starting Materials R R ¹			Reac R	Reaction Products R R ¹		Yield(%)	
1	C1	OMe	(lit.7)	C1	OH	257-258	72	(lit.8)
2	OMe	н	*	ОН	н	173-174	38*	** (lit.9)
3	OMe	C1	* *	ОН	Cl	216	94	(lit.10)
4	OMe	0Me	**	ОН	OMe	162	68	(lit.9)

at 100 °C for 2 h.

* Starting material was prepared by reductive dechlorination of 5-chloro-4-methoxy-2-methyl-3(2<u>H</u>)-pyridazinone. ** Starting materials of Run 3 and 4 were prepared by methoxylation of 4,5-dichloro-2-methyl-3(2<u>H</u>)-pyridazinone with NaOMe in benzene and toluene, respectively. *** tarting material was recoverd: 22%.

REFERENCES

- 1. T. Itai and S. Kamiya, Chem. pharm. Bull., 1963, 11, 1059.
- 2. T. V. Gortinskaya and M. N. Shchukina, Zh. Obsch. Khim., 1960, 30, 1518.
- 3. J. K. Landquist and S. E. Meek, J. Chem. Soc., Perkin Trans. 1, 1972, 2735.
- The 96th Annual meeting of Pharmaceutical Society of Japan, Nagoya, Apr. Abstract of papers II-107 (1976).
- 5. T. Kuraishi, Chem. Pharm. Bull., 1956, 4, 497.
- K. Kaji, H. Mori, I. Yoshida, T. Ichii, H. Nagashima and R. N. Castle, The Annual proceeding of Gifu College of Pharmacy, 1967, 17, 66.
- 7. F. Yoneda and Y. Nitta, Chem. Pharm. Bull., 1963, 11, 269.
- 8. Y. Maki, M. Takaya and M. Suzuki, Yakugaku Zaashi, 1966, 86, 487.
- 9. M. Takaya, T. Yamashita, A. Yamaguchi and H. Kohara, <u>Yakugaku Zaashi</u> 1978, 98, 1530.
- Konecny, Vachlav; Kovac, Stefan Częch. 175,205(Cl. C07D237/04), Appl. 75/3,887, Jun 1975; 4pp.

Received, 13th June, 1986