KUAFUMINE, A NOVEL CYTOTOXIC OXOAPORPHINE ALKALOID FROM <u>FISSISTIGMA</u> GLAUCESCENS

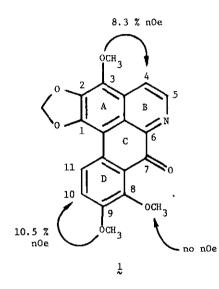
Yang-Chang Wu^a, Sheng-Teh Lu^a, Tian-Shung Wu^b*, and Kuo-Hsiung Lee^c

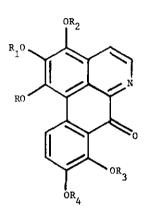
- a. School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan 800, R.O.C.
- b. Department of Applied Chemistry, Providence College of Arts and Science, Taichung, Taiwan 40211, R.O.C.
- c. Natural Products Laboratory, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514, U.S.A.

<u>Abstract</u> - The structure of kuafumine, a new oxoaporphine alkaloid isolated from <u>Fissistigma glaucescens</u> was established as formula 1. This alkaloid showed potent cytotoxicity to KB cell ($ED_{50} = 0.2 \text{ mcg/ml}$) <u>in</u> <u>vitro</u>.

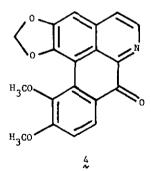
In a previous paper,¹ we reported the isolation and identification of nine alkaloids along with two unidentified compounds from <u>Pissistigma glaucescens</u> (Chinese name: Kua-Fu-Mu) (Annonaceae).² The present paper describes the structure elucidation of a new cytotoxic oxoaporphine alkaloid, kuafumine (FGB), between these two unidentified compounds.

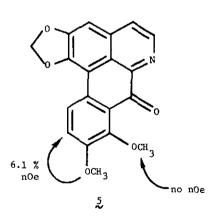
Kuafumine (1) was isolated as reddish needles from acetone, mp $230-232^{\circ}$ C, $[\alpha]_{D}^{24} \pm 0^{\circ}$ (c = 0.1, CHCl₃). The molecular formula of $\frac{1}{2}$ was established as $C_{20}H_{15}NO_{6}$ by high resolution mass spectrometry (Found: 365.0903, Calcd. 365.0898). The presence of an oxoaporphine skeleton in the molecule was easily deduced by the UV spectrum $[\lambda_{max}^{MeOH} nm(\log \epsilon): 214(4.32), 245(4.14), 283(4.38)$ and 375(3.38)], along with the conjugated carbonyl group absorption band at 1650 cm⁻¹ in the 1R spectrum. The absence of phenolic hydroxyl group in the molecule was indicated by the following evidence: i) no bathochromic shift was observed upon addition of the shift reagent KOH in the UV spectrum, ii) no absorption band was seen at 3000-3600 cm⁻¹ region in the IR spectrum. The ¹H NMR spectrum of kuafumine (Table 1) revealed the presence of two AB-quartets. One of them at δ 7.98 and 8.78 (J = 5.5 Hz) was assigned to H-4 and H-5, ³ while the other at δ 7.04 and 8.06 was attributed to two mutually ortho-located protons on the aromatic ring. The higher field signal (δ 7.04) was assigned to H-10 as it gave rise to a 10.5% nOe enhancement of the signal when the methoxyl group at C-9 (δ 3.92) was irradiated. The other NMR signals of which appeared at δ 3.98 and 4.23 (3H each, singlet each) and $\delta 6.26$ (2H, singlet) were assigned to two methoxyls and a methylenedioxy group, respectively. The above data led us to propose the structure of kuafumine either as $\frac{1}{4}$, $\frac{2}{2}$ or $\frac{3}{2}$. A comparison of the ¹H-NMR spectra (Table 1) of $\frac{1}{2}$, $\frac{4^4}{4}$ and oxocrebanine (5) clearly ruled out the possibility of $\frac{2}{2}$ or $\frac{3}{2}$ as the coupling constants of H-10 (J = 8.8 Hz) and H-11 (J = 8.8 Hz) as well as the chemical shifts of the two methoxyl groups at C-8 (δ 3.98) and C-9 (δ 3.92) of $\frac{1}{2}$ are comparable to those of $\frac{5}{2}$ instead of those of $\frac{4}{2}$. The latter showed a J value of 9.0 Hz each for H-8 and H-9 as well as δ 3.78 and δ 3.98 for the methoxyl groups at C-10 and C-11, respectively. This evidence also confirmed the assignment of the two methoxyl groups of $\frac{1}{2}$ at C-8 and C-9 instead of at C-10 and C-11 as found in $\frac{4}{2}$.


Further evidence to support the assignment of $\frac{1}{\sqrt{2}}$ for kuafumine was sought in a nuclear Overhauser effect experiment. Irradiation of methoxyl signals at $\delta 3.92$ and 4.23 led to a 10.5% and 8.3%enhancement of the signals at $\delta 7.04$ (H-10) and 7.98 (H-4), respectively, demonstrating that the two methoxyl groups of them are situated at C-9 and C-3. However, irradiation of the 8-methoxyl group at $\delta 3.98$, no nOe enhancement was observed at any aromatic protons as expected. On the basis of these results, kuafumine should be represented by formula $\frac{1}{\sqrt{2}}$.⁵ This new alkaloid, kuafumine ($\frac{1}{\sqrt{2}}$), exhibited a potent cytotoxicity (ED₅₀=0.2 mcg/ml) in the KB


tissue culture cell <u>in vitro</u>.⁶ The C-3 OMe group of <u>1</u> contributes to potent cytotoxicity as 5_{0} [ED₅₀ (KB)=4.0 mcg/ml] which lacks this OMe group is 20-fold less active than <u>1</u>.

	· · · · · · · · · · · · · · · · · · ·		
	1	4	5
сн ₂ 0-	6.26 (2H,s)	6.18 (2H,s)	6.30 (2H,s)
н (осн _з)	4.23 (3H,s)	7.06 (1H,s)	6.98 (1H,s)
н	7.98 (1H,d;5.5)	7.62 (1H,d;5.0)	7.61 (1H,d;5.0)
	8.78 (1H,d;5.5)	8.72 (1H,d;5.0)	8.77 (1H,d;5.0)
(осн ₃)	3.98 (3H,s)	8.30 (1H,d;9.0)	4.02 (3H,s)
(осн _з)	3.92 (3H,s)	7.06 (1H,d;9.0)	3.96 (3H,s)
н (осн ₃)	7.04 (1H,d;8.8)	3.78 (3H,s)	7.11 (1H,d;8.8)
н (осн ₃)	8.06 (1H,d;8.8)	3.98 (3H,s)	8.21 (1H,d;8.8)


Table I. H-NMR Spectra of Oxoaporphine Alkaloids


a) Run in CDCl₃. Values are ppm. Figures in parentheses are coupling constants in Hz.

,

ACKNOWLEDGEMENT

We thank Prof. H. Furukawa (Meijo University, Japan) for measuring the high resolution mass spectrum. This investigation was supported by a grant from the National Cancer Institute, CA 17625 (K.H. Lee).

REFERENCES AND NOTES

1. S. T. Lu, Y. C. Wu and S. P. Leou, Phytochemistry, 1985, 24, 1829.

- 2. H. L. Li, T. S. Liu, T. C. Huang, T. Koyama and C. E. Devol, 'Flora of Taiwan', Vol. 6, Epoch Publishing Co., Ltd., Taipei, Taiwan, 1979, p. 45.
- 3. H. Guinaudeau, M. Leboeuf and A. Cave, J. Nat. Prod., 1983, 46, 761.
- 4. An oxidizing derivative of 0-methylbulbocapnine (6): mp 235-236°C (acetone); λ_{max}^{MeOH} nm (log ϵ): 256(4.57), 360 (4.12) and 410 (4.11); λ_{max}^{nujol} cm⁻¹:1665, 1044, 940.

5. MS m/z(%): 365(100), 350(69), 334(10), 320(23), 249(8) and 175(17).

 R. I. Geran, N. H. Greenburg, M. M. MacDonald, A. M. Schumacher and B. J. Abbott, <u>Cancer</u> <u>Chemother. Rep. Part 3</u>, 1972, 3, 1.

Received, 4th August, 1986