SOLID STATE BEHAVIOUR OF "DYNAMIC COMPOUNDS" : A ¹³C CP/MAS NMR SPECTROSCOPY STUDY Robert Faure and Emile-Jean Vincent Laboratoire de Chimie Organique Physique, Université d'Aix-Marseille III, Rue Henri Poincaré, 13397 Marseille Cédex 13, France André Rousseau Centre d'Etudes Nucléaires de Grenoble, C.E.A., Avenue des Martyrs, 85X, 38041 Grenoble Cédex, France José Elguero* Instituto de Química Médica, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain Abstract - The ¹³C CP/MAS NMR spectra of 2-methylimidazole, antipyrine, 1-phenyl-3-hydroxy-5-methylpyrazole, 1-p-bromophenyl-3methyl-pyrazolin-5-one, tetrazolo [5,1-b] benzothiazole, and 9acetylcarbazole have been recorded and the signals assigned. Problems such as annular prototropic tautomerism, functional tautomerism, azido/tetrazole isomerism, and rotational isomerism have been studied and, in most cases, solved.

Continuing with our work on the study of heterocyclic compounds in the solid state by 13 C CP/MAS NMR spectroscopy, 1 we now wish to report the behaviour of six compounds, 1 to 6, all of them capable of showing some kind of dynamic phenomena. 2-Methylimidazole 1 shows four well-resolved lines, that can be assigned by analogy with imidazole.²

The values are comparable with those observed insolution, where rapid tautomerism occurs. The mean value for the signals of carbons C_4 and C_5 (120.35 ppm) is close to the value in solution, showing that solid state chemical shifts can be used, instead of

methylated derivatives⁴ for tautomeric studies.

Another case of prototropic tautomerism, functional instead of annular,⁴ occurs in pyrazolones. Antipyrine 2 has been studied as a model compound, since its structure is unambiguously known (for the X-ray determination, see⁵). Here also, the chemical shifts in the solid state are closely related to those in solution. Even if line multiplicities in solid state 13 C NMR can have different origins,⁶ the fact that five resolved resonances of protonated aromatic carbons are observed is probably due to the twisted conformation of antipyrine (X-ray dihedral angle = 52.1°).⁵ 1-Phenyl-3-hydroxy-5-methylpyrazole 3 exists as such in the solid state, as it has been proved by X-ray crystallography.⁷

The strong hydrogen-bonds existing in the solid state (3: cyclic dimer $-0-H\cdots N_2$)⁷ do not affect the chemical shifts.

1-p-Bromophenyl-3-methyl-pyrazolin-5-one 4 presents a more complicated problem. This class of compounds exist in solution as a mixture of three tautomers:^{4,8}

In the solid state^{9,10} only tautomers 4b and 4c are present in the form of long chains of proton-bound $\cdots 4b \cdots 4c \cdots 4b \cdots 4c \cdots$. The spectra in DMSO-d₆ corresponds to a mixture of 10% of CH-tautomer 4a (which gives separate signals) and 90% of OH-and NH-tautomers, 4b and 4c (which give averaged signals). Black dots correspond to not observed signals.

The fact that C_4 and mainly C_5 are broad signals proves that there is a dynamic equilibrium 4b \rightleftharpoons 4c. The ¹³C CP/MAS NMR spectrum of 4 shows the absence of 4a tautomer and the presence of a mixture of tautomers 4b and 4c, the equilibrium 4b \rightleftharpoons 4c being frozen:

Taking into account the results of the X-ray analysis^{9,10} it is reasonable to assume that in the solid state there is a 50:50 mixture of **4b** and **4c**. The spectrum of **4c** is comparable to that of antipyrine 2. In solution, the value observed for C_4 (89.0 ppm) is close to the value for tautomer **4b** (90.1 ppm), but the C_5 signal, more sensitive to tautomerism (~156 ppm), corresponds to the mean value for tautomers **4b** (150.1 ppm) and **4c** (164.8 ppm).

2-Azıdobenzothiazole 5 presents another kind of tautomerism:¹¹ the ring-chain isomerism of heterocyclic azides.

In DMSO-d₆, the compound exists mainly in the tetrazole form 5b, and in the solid state (X-ray structure),¹² the tetrazolo[5,1-b]benzothiazole 5b is the only form present. The ¹³C chemical shifts of 5b in DMSO-d₆ have already been published.¹³ The spectrum obtained in the solid state is very similar to the above reported result:

5b (solid state)

The last example concerns the rotational isomerism of <u>N</u>-acetylcarbazole 6. It is known¹⁴ that at about -100^oC the rotation is frozen and non equivalence is observed for all aromatic carbons, the most sensitive being $C_{1,8}$ ($\Delta\delta$ = 2-3 ppm, depending on the solvent) and $C_{8a,9a}$ ($\Delta\delta \sim 1.5$ ppm). The equivalence of all aromatic carbon-pairs in the solid state cannot be due to a free rotation, but to a lack of resolution (there is an overlapping of the signals appearing at 119.8 and 117.5 ppm).

6 $(DMSO-d_{z})^{15}$

5 (solid state)

In order to check the validity of the 13 C CP/MAS NMR approach to structural problems, most of the preceding compounds were selected because their X-ray structures had been determined. Only in the last example, 6, it was not possible to reach the expected goal. In general, 13 C CP/MAS NMR is a powerful and exciting tool for the study of a large variety of structural problems. 16 REFERENCES AND NOTES

- 1. R. Faure, E.J. Vincent, and J. Elguero, Heterocycles, 1983, 20, 1713.
- 2. J. Elguero, A. Fruchier, and V. Pellegrin, J. Chem. Soc., Chem. Commun., 1981, 1207.
- 3. E.P. Papadopoulos and U. Hollstein, Org. Magn. Reson., 1982, 19, 188.
- 4. J. Elguero, C. Marzin, A.R. Katritzky, and P. Linda, "The Tautomerism of Heterocycles", Academic Press, New York, 1976.
- 5. T.P. Singh and M. Vijayan, <u>Acta Crystallogr.</u>, <u>Part</u> B, 1973, 29, 714 and 1974, 30, 557.
- 6. G.R. Hays, J. Chem. Soc., Perkin Trans. 2, 1983, 1049.
- 7. F. Bechtel, J. Gaultier, and C. Hauw, Cryst. Struct. Commun., 1973, 3, 473.
- G.E. Hawkes, E.W. Randall, J. Elguero, and C. Marzin, J. Chem. Soc., Perkin Trans.
 2, 1977, 1024.
- 9. F. Bechtel, J. Gaultier, and C. Hauw, Cryst. Struct. Commun., 1973, 3, 469.
- 10. The X-ray structure⁹ has been determined for the non-brominated pyrazolone (1-phenyl-3-methyl-pyrazolin-5-one).
- 11. R. Faure, J.P. Galy, E.J. Vincent, and J. Elguero, J. <u>Heterocycl</u>. <u>Chem</u>., 1977, 14, 1299.
 - 12. P. Domiano and A. Musatti, Cryst. Struct. Commun., 1974, 3, 335.
 - 13. R. Faure, J.P. Galy, E.J. Vincent, and J. Elguero, Can. J. Chem., 1978, 56, 46.
 - 14. A. Cipiciano, P. Linda, D. Macciantelli, and L. Lunazzi, J. <u>Chem. Soc.</u>, <u>Perkin</u> <u>Trans.</u> 2, 1979, 1045; M. Begtrup, R.M. Claramunt, and J. Elguero, J. <u>Chem. Soc.</u>, <u>Perkin</u> <u>Trans.</u> 2, 1978, 99.
 - 15. J. Giraud and C. Marzin, Org. Magn. Reson., 1979, 12, 647.
 - 16. All the compounds here studied are known and described in the references corresponding to NMR studies in solution. Spectra were obtained with a Bruker CXP-200 FT NMR spectrometer (C.E.N.G.), operating at an applied field strength of 4.5 T or a ¹³C resonance frequency of 50.31 MHz. A typical cross-polarization time was 5 ms with a recycle time of 10 to 15 s. Spectral width, 20 kHz. Spinning rate (estimated from the location of spinning sidebans), 3.2 to 3.5 kHz. Proton decoupling field ≥ 1.2 mT. Crystalline linear polyethylene (33.63 ppm downfield from tetramethylsilane)¹⁷ or powdered hexamethylbenzene were used as references.
 17. W.L. Earl and D.L. VanderHart, J. Magn. Reson., 1982, 48, 35.

Received, 1st September, 1986