DIASTEREOSELECTIVE SYNTHESIS OF <u>TRANS</u>-4,5-DISUBSTITUTED OXAZOLIDIN-2-ONES AND VICINAL AMINO ALCOHOLS THROUGH ALKYLATION OF <u>N</u>-ACYL-IMINIUM ION INTERMEDIATES

Shinzo Kano,* Yoko Yuasa, and Shiroshi Shibuya Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

Abstract — Treatment of 5-substituted 4-ethoxyoxazolidin-2-ones (10a-f, 13a,b) with allyltrimethylsilane in the presence of titanium tetrachloride gave the corresponding trans-4,5-disubstituted oxazolidin-2-ones (14a-f, 16a,b), respectively, with high diastereoselectivity. Methallylation of 13a,b with methallyltrimethylsilane yielded 16c,d, respectively. Ring cleavage of 14a-f afforded the corresponding threo vicinal amino alcohols (17a-f), respectively.

Vicinal amino alcohols are biologically important class of compounds as exemplified by ephedrine ($\frac{1a}{1a}$) and related compounds and statin ($\frac{1b}{1b}$). For the preparation of vicinal amino alcoholic structures, anionic center of $\frac{2a}{2a}$ possessing the appropriate substituent at nitrogen has been used to introduce a hydroxyalkyl group at the α -position of nitrogen. On the other hand, \underline{N} -acyliminium salts have been widely applied to a formation of carbon-carbon bond at the α -position. Fused oxazolidin-2-ones such as $\underline{3a,b}$, prepared by cyclization of the iminium ion ($\underline{2b}$), were used to a synthesis of α -(α '-hydroxyalkyl)- \underline{N} -heterocycles by cleavage of the oxazolidinone ring. We investigated an alkylation of $\underline{2b}$ in the expectation that the alkylation would proceed from the less hindered face of $\underline{2b}$. Ring cleavage of the alkylation products, \underline{trans} -4,5-disubstituted oxazolidin-2-ones, attained the diastereoselective synthesis of vicinal amino alcohols. The results of our studies are described in this paper.

The 5-substituted 4-ethoxyoxazolidin-2-ones (10a-f, 13a,b), used for generation of the iminium salts, were prepared as follows. Alkylation of 5-methyloxazolidin-2,4-dione (4a) MeI (EtI for 8b and allyl bromide for 8c), KOH, dimethyl sulfoxide, room temperature, 10 h afforded $8a-c^7$ in 78-80 % yield. The same reaction by the use of 5-ethyloxazolidin-2,4-dione (4b) instead of 4a gave 8d-f. The reaction of methyl lactate (5a) with isocyanates (6a-c; 1.2 equiv) in toluene under reflux for 3 h, followed by further heating at 175-180°C in the presence of pyridine (15 equiv) for 10 h also gave 8a-c via 7a-c in 80-83 % yield from 5a. The same reaction of ethyl α -hydroxybutyrate with 6a-c afforded 8d-f, respectively. The reaction of methyl ester of (S)-(-)-malic acid with 6a,b afforded the oxazolfdin-2,4-diones (11a,b) in 60 and 62 % yield, respectively. Reduction of 8a-f and 11a,b with NaBH₄ in methanol at 0°C (-20°C for 11a,b) yielded the corresponding 4-hydroxy derivatives (9a-f, 12a,b), respectively. Treatment of 9a-f and 12a,b with ethanol (pH 2.0, 0°C, 3 h) yielded the corresponding 4-ethoxy derivatives (10a-f; 10a-f; 10a-f) yield, 10a-f0 % yield, 10a-f1 and 10a-f2 % yield, 10a-f3 % yield, 10a-f3 % yield, 10a-f4 % yield), respectively, as an oil in all cases. These 4-ethoxyoxazolidin-2-ones were subjected to alkylation reaction. Allyltrimethylsilane and methallyltrimethylsilane were used as the nucleophilic alkylation reagent.

OH R COOR
$$\frac{6}{5}$$
 $\frac{6}{6}$ $\frac{10}{11}$ $\frac{12}{12}$ $\frac{13}{13}$
 $\frac{10}{6}$ $\frac{10}{11}$ $\frac{12}{12}$ $\frac{13}{13}$
 $\frac{10}{11}$ $\frac{12}{12}$ $\frac{13}{13}$

Treatment of 10a with TiCl₄ (1.2 equiv, 0°C, CH₂Cl₂, 10 min), followed by addition of allyltrimethylsilane (1.2 equi, $0^{\circ}C \longrightarrow \text{room temperature}$, 10 h) afforded 3,5-dimethyl-4-allyloxazolidin-2one (14a) in 88 % yield as a single diastereomer as an oil, ^{1}H NMR (CDCl₂) δ 1.37 (3H, d, J=7 Hz), 2.88 (3H, s), 2.26-2.49 (2H, m), 3.17-3.36 (1H, m), 4.11-4.39 (1H, m), 5.09-5.29 (2H, m), 5.54-5.97 (1H, m), IR (CHCl $_2$) 1750 cm $^{-1}$. The relative configuration of 5-CH $_3$ and 4-allyl groups was determined by comparison with the $^1\mathrm{H}$ NMR (CDCI $_3$) spectrum of 3,5,5-trimethyl analogue ($\underline{15}$) prepared by allylation of 3,5,5-trimethyl-4-ethoxyoxazolidin-2-one under the same conditions. Two singlets due to 5-CH₃ group were observed at δ 1.37 and 1.43. The cis-oriented CH₂ group relative to 4-allyl group resonated at the lower field. Thus, the relative configuration at 4- and 5-positions of 14a was determined as trans. In this reaction, allylation was found to proceed from the less hindered face of the iminium ion as expected. The reaction of 10b-f with allyltrimethylsilane under the same conditions as 10a afforded the corresponding 5-substituted 4-allyloxazolidin-2-ones (14b-f), 7respectively, in 80-83 % yield as an oil in all cases. Treatment of 13a,b with allyltrimethylsilane under the same conditions as above gave 16a,b as an oil in 73 and 75 % yield, respectively. Furthermore, the reaction of 13a,b with methallyltrimethylsilane afforded 4-methallyl derivatives (16c,d) as an oil in 68 and 65 % yield, respectively. Ring cleavage of 14a-f by heating in 10 % EtOH-NaOH under reflux for 10 h gave the corresponding vicinal $\underline{\text{threo}}$ amino alcohols $(\underline{17a-f})$, $\overline{\text{7}}$ respectively, in 90-92 % yield in all cases.

An enantioselective synthesis of statin $(\underline{1b})$ and its \underline{N} -substituted analogs is under progressive.

REFERENCES AND NOTES

- 1. J. S. Glasley, 'Encyclopedia of the Alkaloids," Plenum Press, New York (1975).
- H. Umezawa, T. Aoyagi, H. Morishima, M. Matsuzakim M. Hamada, and T. Takeuchi, <u>J. Antibiotics</u>,
 23, 259 (1970); T. Aoyagi, H. Morishima, R. Nishizawa, S. Kunimoto, T. Takeuchi, and H. Umezawa,
 <u>J. Antibiotics</u>, <u>25</u>, 689 (1972); P. W. K. Woo, <u>Tetrahedron Lett</u>., <u>26</u>, 2973 (1985), and references cited therein.
- D. Seebach, D. Enders, and B. Renger, <u>Chem. Ber.</u>, <u>110</u>, 1852 (1981); A. I. Meyers, S. Helling, and W. T. Hoeve, <u>Tetrahedron Lett.</u>, <u>22</u>, 5115 (1981).
- 4. W. N. Speckamp and H. Hiemstra, Tetrahedron, 41, 4367 (1985), and references cited therein.
- S. Kano, T. Yokomatsu, Y. Yuasa, and S. Shibuya, <u>J. Org. Chem.</u>, <u>48</u>, 3835 (1983); S. Kano, Y. Yuasa, T. Yokomatsu, and S. Shibuya, <u>Chem. Lett.</u>, <u>1983</u>, 1475; S. Kano, Y. Yuasa, and S. Shibuya, <u>Synthetic Commun.</u>, <u>15</u>, 883 (1985).
- 6. M. Kobayashi, M. Kitazawa, and T. Saito, Yakuga<u>ku Zasshi</u>, 103, 1195 (1983).
- 7. All new compounds gave the satisfactory spectral data (1 H NMR, IR, and Mass spectra). In the mass spectra of <u>14a-f</u> and <u>16a-d</u>, molecular ion peaks werenot observed in their EI mass spectra, but M⁺+1 peaks were clearly observed in their CI mass spectra. In the 1 H NMR spectra of <u>14b,c</u> the signals due to 5-CH₃ were observed at δ 1.33 as doublets (\underline{J} =7 Hz). The signals due to CH₃ at the methallyl group of <u>16c,d</u> were observed at δ 1.78. IR (CHCl₃) spectra of <u>14a-f</u> showed absorbtion band at 1750 cm⁻¹.
- 8. An enantioselective synthesis of statin (\underline{lb}) and a variety of \underline{N} -susbstituted analogous compounds will be reported elsewhere soon.

Received, 6th November, 1986