A NOVEL PREPARATION OF POLARIZED ETHYLENES BY THE REACTION OF THIOAMIDES OR DITHIOCARBOXYLATES WITH TETRACYANOETHYLENE OXIDE. SYNTHESIS OF PYRAZOLES AND PYRIMIDINES

Yoshinori Tominaga,^{*} Yoshiki Matsuoka, Shinya Kohra, and Akira Hosomi^{*} Faculty of Pharmaceutical Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852, Japan

Abstract - Polarized ethylenes having both electrondonating (an amino or a methylthio group) and electronaccepting (two cyano groups) groups on the adjacent two olefinic carbon atoms were prepared by the reaction of thioamides or methyl dithiocarboxylates with tetracyanoethylene oxide in good yields. Reactions of these polarized ethylenes with hydrazine or guanidine carbonate gave the corresponding pyrazole and pyrimidine derivatives in good yields.

Ethylenes having electron-donating groups on an olefinic carbon atom and electron-accepting groups on another carbon atom of the olefin are one of the most important and interesting compounds from both synthetic and theoretical points of view.¹ Among these compounds, for example, ketene dithioacetals,^{2,3} ethoxymethylene compounds,⁴ and aminomethylene dompounds⁵ are widely used for the preparation of heterocyclic compounds.

A and/or B; MeS, EtO, R₂N, etc. C and/or D; CN, COOMe, NO₂, SO₂R, etc.

Although it has been reported that the reaction of thiocarbonyl derivatives with tetracyanoethylene oxide give stable thiocarbonyl ylides, thiazoles, and dicyanomethylene compounds,⁶⁻⁹ the preparation of the polarized ethylenes using dicyanomethylenation with tetracyanoethylene oxide has been unknown hitherto. We now wish to report a novel and simple preparation of polarized ethylenes bearing push-pull substituents (an amino and a methylthio, and two cyano groups on each of olefinic carbon atoms, respectively) by the reaction of thioamides or methyl dithiocarboxylates with tetracyanoethylene oxide. Thioamides (1a-j), readily available by the Willgerodt-Kindler reaction¹⁰⁻¹², were allowed to react with tetracyanoethylene oxide at room temperature in benzene with stirring to give the corresponding dicyanoethylene compounds (3a-j) very smoothly. Moreover the reaction of methyl dithiocarboxylates (1k-r) with tetracyanoethylene oxide also occurred under the similar conditions to yield the corresponding 2-methylthio-1,1-dicyanoethylene derivatives (3k-r) in good yields. The results are listed in Table 1.

Table 1. Reactions of thioamides and dithiocarboxylates with tetracyanoethylene oxide

I		CN PhH	X C=C CN CN	
1	la-r 2		3a-r	
roduct	(3) R	Х	mp("C) % ነ	Yield
3a:	с _б н ₅	morpholino	178	69
b:	o-MeO-C ₆ H ₄	morpholino	95	91
с:	p-MeO-C ₆ H ₄	morpholino	114	84
d:	p-Cl-C6H4	morpholino	153	85
e:	3,4-(MeO) ₂ -C ₆ H ₃	morpholino	151	90
f:	3,4-0-CH2-0-C6H3	morpholino	187	82
g:	2-thienyl	morpholino	145	88
h:	C6H5-CH2	morpholino	113	77
i:	p-Me-C6H4-CH2	morpholino	120	75
j:	C6H5-CH2CH2	morpholino	111	79
k:	methylthio	morpholino	121	62
1:	с _б н ₅	methylthio	95	78
m:	o-MeO-C6H4	methylthio	75	67
n:	p-MeO-C6H4	methylthio	95	72
0:	p-Cl-C ₆ H ₄	methylthio	155	82
p:	p-Me ₂ N-C ₆ H ₄	methylthio	116	91
q:	2-thienyl	methylthio	102	78
r:	C ₆ H ₅ -CH ₂	methylthio	oil	68

It is well known that the reaction of polarized ethylenes like ketene dithioacetals with bifunctionalized amines such as hydrazine or amidine derivatives gives the corresponding pyrazole or pyrimidine derivatives.¹³ The heterocyclic compounds, thus obtained, are not only interesting from a viewpoint of biological activities but also important and useful as the starting materials for the conversion to other heterocyclic compounds.^{13,16} Therefore, we attempted to prepare pyrazole and pyrimidine derivatives using 3a-r. Reactions of 3a-f, 3h, 3i with hydrazine hydrate gave the corresponding 3-substituted 5-amino-4-cyanopyrazole derivatives (4a-h) on heating at 100°C for 5 h in good yields. In contrast, reactions of morpholino compounds (3a-k) with phenylhydrazine did not occur under the similar conditions. However this problem can be readily solved by the use of methylthioethylenic compounds (31-r) instead of 3a-k since dicyanoethylenes bearing the methylthio group is generally more active toward nucleophiles than those of the morpholino group. Namely, reactions of 3e, 3j, 30 with phenylhydrazine gave the corresponding 5-amino-1-aryl-4-cyanopyrazoles (4i-k) at reflux for 1 h in ethanol, as illustrated in Table 2.

Table 2.	Synthesis	of	5-amino-1-ar	yl-4-cyand	pyrazole	derivatives	(4))
----------	-----------	----	--------------	------------	----------	-------------	-----	---

R R 3	CN + NH ₂ -NH CN	I-R' -	EtOH R	NH2 R'Ha-k
Product	(4) R	R'	mp(°C)	% Yield
4a:	с _б н ₅	н	203	74
b:	o-MeO-C6H4	н	192	88
c:	p-MeO-C ₆ H ₄	н	158	69
d:	p-Cl-C6H4	н	221	82
e:	3,4-0-CH2-0-C6H3	н	215	65
f:	3,4-(MeO) ₂ -C ₆ H ₃	н	175	51
g:	с ₆ н ₅ -сн ₂	н	141	98
h:	p-Me-C6H4-CH2	н	162	98
i:	C ₆ H ₅	с ₆ н ₅	160	46
j:	p-MeO-C ₆ H ₄	с ₆ н ₅	190	43
k:	p-Cl-C ₆ H ₄	с ₆ н ₅	189	64

Reactions of 3a-d, 3g, 3h with guanidine carbonate on heating at $200^{\circ}C$ for 2 h gave the corresponding 2,4-diamino-5-cyanopyrimidine derivatives (5a-e) in 52-96% yield. The results are summarized in Table 3.

In conclusion, the utility of the present method for preparing polarized ethylenes (3) which were otherwise inaccessible was mostly displayed by readily availability of starting materials and simple manipulation of the conversion. The activated ethylenes (3) are also very useful reagents for the preparation of a variety of heterocyclic compounds such as pyrazoles and pyrimidines. ACKNOWLEDGMENTS - This work is partially supported by the Ministry of Education, Science, and Culture, Yamada Science Foundation, Houan-Sha.

REFERENCES AND NOTES

 J. Sandastrom, 'Topics in Sterochemistry', eds. by N. L. Allinger, E. L. Eliel, and S. H. Wilen, An Interscience Publication, John Wiley & Sons, New York, Vol. 14, Chapter 2, 1983, pp. 83-181. Table 3. Synthesis of 2,4-diamino-6-aryl-5-cyanopyrimidines (5)

	N + HN=C NH ₂	20 H ₂ CO ₃ —	$\xrightarrow{\text{0°C}}_{\text{H}_2\text{N}} \xrightarrow{\text{NH}_2}_{\text{N}}$	CN
3			5a-f	
Product	(5) R	mp(°C)	% Yield	
5a:	с _б н ₅	300	85	
b:	p-MeO-C6H4	245	83	
с:	p-Cl-C6H4	281	90	
d:	o-MeO-C ₆ H ₄	218	70	
e:	2-thienyl	236	71	
f:	C6 ^H 5 ^{-CH} 2	228	52	

- Y. Tominaga and Y. Matsuda, J. Heterocyclic Chem., 1985, 37, 937 and references cited therein.
- Y. Tominaga and Y. Matsuda, Yuki Gousei Kagaku Kyokai-shi (J. Synth. Org. Chem., Japan), 1985, 43, 669.
- 4. D. L. Boger and M. Mullican, J. Org. Chem., 1984, 49, 4033.
- N. Takeuchi, K. Ochi, M. Murase, and S. Tobinaga, Chem. Pharm. Bull., 1983, 31, 4360.
- 6. W. J. Linn and R. E. Benson, J. Am. Chem. Soc., 1965, 87, 3657.
- 7. W. J. Linn, J. Am. Chem. Soc., 1965, 87, 3665.
- 8. A. Rouessag and J. Vialle, Bull. Soc. Chim. France, 1968, 2054.
- Satisfactory elemental analysis and spectral data were obtained for all new compounds.
- 10. M. Carmack, Org. Reactions, 1946, 3, 83.
- 11. Compound 1k was prepared by the reaction of morpholine with carbon disulfide in the presence of sodium hydroxide in dimethyl sulfoxide followed by methylation with dimethyl sulfate. cf: F. Stansfield and M. D. Coomassie, J. Chem. Soc., Perkin I, 1979, 2708.
- Methyl dithiocarboxylates (11-r) were synthesized by the treatment of the corresponding thiolonium salts with hydrogen sulfide. cf: R. Mayer, S. Scheithauer, and D. Kunz, Chem. Ber., 1966, 99, 1393.
- D. J. Brown, 'Pyrimidines and their Benzo Derivatives', in 'Comprehensive Heterocyclic Chemistry', Vol.3, eds. by A. R. Katrizky and C. W. Rees, Pergamon Press, Oxford, 1984, pp. 57-156.
- 14. S. Kobayashi, Chem. Pharm. Bull., 1973, 21, 941.
- 15. R. K. Robins, J. Am. Chem. Soc., 1956, 78, 784.
- 16. C. C. Cheng and R. K. Robins, J. Org. Chem., 1956, 21, 1240.

Received, 4th November, 1986