STRUCTURE OF MULBERROFURAN R, A NOVEL 2-ARYLBENZOFURAN DERIVATIVE FROM THE CULTIVATED MULBERRY TREE (MORUS LHOU KOIDZ.)¹

Hideaki Kohno, Kazuhiro Takaba, Toshio Fukai, and Taro Nomura[®] Faculty of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi-shi, Chiba 274, Japan

Abstract ———— A novel 2-arylbenzofuran derivative, mulberrofuran R, was isolated from an ethyl acetate extract of the root bark of the cultivated mulberry tree (Rosō, a cultivated variety of <u>Morus lhou</u> Koidz.). Its structure was shown to be 1, on the basis of spectral evidence. Mulberrofuran R is regarded biogenetically as a variation of a Diels-Alder type adduct of a chalcone derivative and a dehydroprenyl-2-arylbenzofuran derivative.

Previously we reported the structure determination of a series of phenolic compounds isolated from the root bark of the cultivated mulberry tree (Japanese name "Rosō", a cultivated variety of <u>Morus lhou</u> Koidz.).²⁻⁹ Further extensive fractionation of ethyl acetate extract of the root bark led to the isolation of a new 2-arylbenzofuran derivative, mulberrofuran R. We herein report the character-ization of this compound.

The dried root bark of the cultivated mulberry tree was extracted successively with \underline{n} -hexane, benzene, and ethyl acetate. Mulberrofuran R (1) was isolated from the ethyl acetate extract as described in the Experimental section.

Mulberrofuran R (1), an amorphous powder, gave the EI-MS showing a molecular ion peak at m/z 456, and the ¹³C nmr spectrum indicating the presence of twenty-seven carbon atoms [one methyl carbon, twenty-six olefinic or aromatic carbons (llxCH, 7xC, 8xC-O)] (Table 1). A work-up of 1 with dimethyl sulfate gave the hexamethyl ether (1a) which showed a molecular ion peak at m/z 540 in its EI-MS. These results indicated the composition of mulberrofuran R to be $C_{27}H_{20}O_7$. While mulberrofuran R was negative to the methanolic ferric chloride test, its ir spectrum showed absorption bands due to hydroxyl and benzene ring moieties. The uv spectrum of 1 exhibited maxima at 215, 285 (infl.), 326, and 335 (infl.), and showed no bathochromic shift in the presence of aluminum chloride. These uv characteristics were similar to those of 4'-substituted 6,3',5'-trioxygenated 2arylbenzofuran derivatives.^{4,6,7,10} The ¹H nmr spectrum of 1, analysed by a

No. of C	1	4	No. of C	1	4	No. of C	1		4
2	156.0 ^{*a}	156.5 ^{*a}	1'	131.4	130.5	5"	128.7 ^{*b}		-
3	101.7	102.8	2',6'	104.2	103.9	6"	132.1 ^{*c}		
3a	122.1	122.0	3',5'	156.6	156.5	7"	20.6		
4	121.4	121.8	4'	121.6	115.9	8"	118.5 ^{*d}	(15") ²⁾	122.5
5	112.7	113.1	1"	114.2 ^{*d}		9"	156.1 ^{*a}	(16")	157.1 ^{*a}
6	158.4 ^{*a}	158.2 ^{*a}	2"	132.0 ^{*c}		10"	104.1	(17")	104.6
7	98.0	98.4	3"	127.6 ^{*b}		11"	155.9 ^{*a}	(18")	157.1 ^{*a}
7a	155.0 ^{*a}	155.3 ^{*a}	4"	151.0 ^{*a}		12"	108.0	(19")	107.5
						13"	132.2	(20'')	133.9

Table 1. ¹³C nmr data of 1 and 4^{1} in acetone-d_c.

1): Data from K. Hirakura et al. (Ref. 4). 2): The numbers are those of the corresponding carbons of 4. *a-d: Assignments may be interchanged in each column.

decoupling experiment and by comparison with the spectra of 2-arylbenzofuran derivatives, 4,6,7 showed the signals of the following protons: protons i) in a 2-arylbenzofuran moiety, § 6.82 (1H, dd, J = 2 and 8 Hz), 6.99 (2H, s), 7.00 (1H, br d, \underline{J} = 2), 7.06 (1H, d, \underline{J} = 0.92), 7.42 (1H, d, \underline{J} = 8), ii) in a 2,4-dioxygenated phenyl moiety (E-ring), δ 6.4580 (1H, d, J = 2), 6.4599 (1H, dd, J = 2 and 9), 7.13 (IH, d, J = 9), iii) in a 2,3,5-trisubstituted phenyl moiety (D-ring), δ 7.04 and 7.08 (each 1H, qd, J = 0.73 and 2), and iv) in a methyl group, δ 2.34 (3H, br s). A comparative examination of the 13 C nmr spectra of 1 and some 2-arylbenzofuran derivatives [mulberrofuran J $(4)^4$ and other similar compounds^{6,7}] indicated the presence of a 4'-substituted 6,3',5'-trioxygenated 2-arylbenzofuran and a 2,4-dioxygenated phenyl moiety in the structure (Table 1). In the spectrum of 1, the chemical shifts of the carbon atoms of the 2-arylbenzofuran moiety and the 2,4-dioxygenated phenyl moiety were similar to those of the relevant carbon atoms of 4, except the carbon atoms at C-4' and 15" positions which were affected by additional substituents. From the above results, the partial structure (1') was suggested. The substitution pattern in the D-ring was supported by considering the following. Dhami et al. reported that the signal of the diortho-substituted methoxyl carbon nucleus appears at δ <u>ca.</u> 60 ppm, while that of the monoortho-substituted methoxyl nucleus at δ ca. 55 ppm.¹¹ In the ¹³C nmr spectrum of hexamethylmulberrofuran R (la, CDCl₃) the signals of methoxyl carbons appeared at δ 55.5, 55.8, 55.9, 56.2 (OCH₃ x 2), and 60.2 ppm, suggesting that one of the methoxyl groups is the diortho-substituted methoxyl group and the group is located in the D-ring. From these results, three possible structures

(1-3) can be suggested. Discrimination was carried out among the structures by the following decoupling experiment: irradiation of the methyl proton signal at δ 2.34 changes each of the signals at δ 7.04 (qd, $\underline{J} = 0.73$ and 2) and 7.08 (qd, $\underline{J} =$ 0.73 and 2) into doublet signals ($\underline{J} = 2$). Considering the benzylic coupling constants to be identical and the magnitude ($\underline{J} = 0.73$ Hz) of the coupling constants, structures 2 and 3 could be excluded.¹²

From the above results, we propose that formula (1) is the structure of mulberrofuran R. Biogenetically, mulberrofuran R is regarded as a variation of Diels-Alder type adducts such as mulberrofurans J (4) and C (5).¹³

EXPERIMENTAL

Abbreviations: s = singlet, d = doublet, dd = double doublet, br = broad, sh = shoulder, infl. inflection. The general experimental procedures followed are described in our previous papers.²⁻⁹ The following insturuments were used: uv spectra; Hitachi 340 UV spectrometer, ir spectra; Hitachi 260-30 IR spectrometer, ms; JEOL JMS 01SG-2, ¹H and ¹³C nmr spectra; JEOL JNM-GX400 FT NMR spectrometer.

Isolation of Mulberrofuran R (1)

Ethyl acetate extract $(300 \text{ g})^{3,6}$ of the dried root bark of cultivated mulberry trees (26 Kg, Japanese name "Rosō", a cultivated variety of <u>Morus lhou</u> Koidz.), collected in the area around Takasaki, Gunma Prefecture, Japan, in December, 1981, was chromatographed on silica gel (1.6 Kg) with benzene-methanol as an eluent, each fraction being monitored by tlc. The fractions eluted with benzene containing 5% methanol were evaporated to leave a residue (10 g), which were rechromatographed on silica gel (250 g) with <u>n</u>-hexane-acetone as an eluent. The fractions eluted with <u>n</u>-hexane containing 30% acetone were evaporated to leave the residue (5 g). The residue (3 g) was fractionated by preparative tlc (solvent system, benzene:ethyl acetate=1:1, benzene: acetone=1:1, benzene:ethyl acetate=1:2) to give mulberrofuran R (1, 4 mg, 2 x 10⁻⁵% yield from the root bark).

Mulberrofuran R (1)

Compound 1 was obtained as an amorphous powder. Although only one spot was detected on the (benzene:ethyl acetate=1:1, benzene:acetone=1:1, benzene:ethyl acetate=1:2), 1 could not be isolated in a crystalline form. FeCl₃ test: negative. EI-MS $\underline{m/z}$: 456 (M⁺), 242, 110, 107. uv λ_{max}^{EtOH} nm (log \mathcal{E}): 285 (infl. 4.01), 297 (infl. 4.10), 326 (4.83). ir J_{max}^{KBr} cm⁻¹: 3380, 2920, 1620, 1595 (sh), 1440. ¹H nmr (δ in acetone-d₆, digital resolution: 0.00045 ppm): 2.34 (3H, br s, C-1"-CH₃), 6.4580 (1H, d, J = 2 Hz, C-10"-H), 6.4599 (1H, dd, J = 2 and 9 Hz, C-12"-H), 6.82 (1H, dd, J = 2 and 8 Hz, C-5-H), 6.99 (2H, s, C-2' and -6'-H), 7.00 (1H, br d, J = 2 Hz, C-7-H), 7.04 and 7.08 (each 1H, qd, J = 0.73 and 2 Hz, C-2" and -6"-H), 7.06 (1H, d, J = 0.92 Hz, C-3-H), 7.13 (1H, d, J = 9 Hz, C-13"-H), 7.42 (1H, d, J = 8 Hz, C-4-H). ¹³C nmr spectra are described in the Table 1.

Mulberrofuran R Hexamethyl Ether (1a)

A mixture of mulberrofuran R (1, 1.2 mg), dimethyl sulfate (0.27 ml) and potassium carbonate (5 g) in acetone (30 ml) was refluxed for 1 h and treated as usual. The reaction product was purified by preparative tlc (<u>n</u>-hexane:ethyl ether=1:1) to give a hexamethyl ether (**1a**, 0.1 mg). EI-MS <u>m/z</u>: 540 (M^+), 526, 525, 270. ¹H nmr (δ in acetone-d₆+CDCl₃=1:1, 30 °C): 2.32 (3H, br s, C-1"-CH₃), 3.13, 3.79, 3.837, and 3.89 (each 3H, s, 0CH₃), 3.842 (6H, s, 0CH₃x2), 6.55 (1H, dd, <u>J</u> = 2 and 8 Hz, C-12"-H), 6.61 (1H, d, <u>J</u> = 2 Hz, C-10"-H), 6.89 (1H,dd, <u>J</u> = 2 and 8 Hz, C-5-H), 6.89 and 7.00 (each 1H, br s, C-2" and -6"-H), 7.15 (1H, br d, <u>J</u> = 2 Hz, C-7-H), 7.21 (2H, s, C-2' and -6'-H), 7.18 (1H, d, <u>J</u> = 8 Hz, C-13"-H), 7.22 (1H, br d, <u>J</u> = 1 Hz, C-3-H), 7.48 (1H, d, <u>J</u> = 9 Hz, C-4-H).

REFERENCES AND NOTES

- Part XXXIX on "Constituents of the Cultivated Mulberry Tree." Part XXXVIII: Y. Hano, H. Tsubura, and T. Nomura, Heterocycles, 1986, 24, 2603.
- 2. Y. Hano, K. Hirakura, T. Nomura, S. Terada, and K. Fukushima, Planta Med., 1984, 50, 127.
- 3. K. Hirakura, T. Fukai, Y. Hano, and T. Nomura, Phytochemistry, 1985, 24, 159.
- K. Hirakura, Y. Hano, T. Fukai, T. Nomura, J. Uzawa, and K. Fukushima, <u>Chem. Pharm.</u> Bull., 1985, 33, 1088.
- 5. T. Fukai, T. Fujimoto, Y. Hano, T. Nomura, and J. Uzawa, Heterocycles, 1984, 22, 2805.
- T. Fukai, Y. Hano, K. Hirakura, T. Nomura, J. Uzawa, and K. Fukushima, <u>Chem. Pharm.</u> <u>Bull.</u>, 1985, 33, 3195.
- 7. T. Fukai, Y. Hano, K. Hirakura, T. Nomura, and J. Uzawa, Chem. Pharm. Bull., 1985, 33, 4288.
- 8. K. Hirakura, I. Saida, T. Fukai, and T. Nomura, Heterocycles, 1985, 23, 2239.
- 9. K. Hirakura, Y. Fujimoto, T. Fukai, and T. Nomura, J. Nat. Prod., 1986, 49, 218.
- M. Takasugi, S. Nagao, L. Muñoz, S. Ishikawa, T. Masamune, A. Shírata, and T. Takahashi, "Abstracts of Papers, 22nd Symposium on the Chemistry of Natural Products," Fukuoka, 1979, p 275.
- 11. K.S. Dhami and J.B. Stothers, Can. J. Chem., 1966, 44, 2855.
- L.M. Jackman and S. Sternhell, 'Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd Edition', Pergamon Press, Oxford, 1969. p 330.
- 13. T. Nomura, T. Fukai, J. Matsumoto, and T. Ohmori, Planta Med., 1982, 46, 28.

Received, 19th November, 1986