
NITRILES IN HETEROCYCLIC SYNTHESIS: SYNTHESIS OF SOME NEW PYRIDINE, PYRIDAZINE AND PYRIMIDINE DERIVATIVES

Mona Hassan Mohamed, Nadia Sobhy Ibrahim, and Mohamed Hilmy Elnagdi Chemistry Department, Faculty of Science, Cairo University, Egypt

<u>Abstract</u> - Pyrimidine, pyridazine, pyridine and pyrazolopyrimidine derivatives were synthesised from 3-amino-2-cyano-4-ethoxycarbonylcrotononitrile $(\underline{1})$ as a starting material.

In connection with our previous interest in developing new approaches for synthesis of heterocycles utilising readily obtainable starting materials, 1,2 we report here the synthesis of a variety of new heterocycles utilising the recently synthesized 3-amino-2-cyano-4-ethoxycarbonylcrotononitrile (1). Thus compound <u>1</u> (0.01 mole) reacted with trichloroacetonitrile (0.01 mole) in refluxing ethanol (30 ml) catalyzed with a few drops of triethylamine for 3 h to yield a 1:1 adduct. Two isomeric structures were considered (cf. 2 and 3). Structure 2 was ruled out based on ¹H-NMR which revealed absence of a methylene group. The formation of <u>3</u> is thus assumed to take place via addition of the active methylene moiety in <u>1</u> to the nitrile and cyclization. The formation of <u>3</u> from reaction of 2-amino-1,1',3-tricyanopropene with trichloroacetonitrile.³ This is different from the general behaviour of enaminonitriles. The later affords pyrimidines on reaction with trichloroacetonitrile.^{4,5} The presence of active methylene in <u>1</u> and in aminotricyanopropene lead to reaction with trichloroacetonitrile to occur exclusively at this CH₂.

Compound $\underline{3}$ (0.01 mole) reacted with hydrazine hydrate (0.01 mole) in refluxed ethanol (20 ml) for 3 h to yield the hydrazine derivative $\underline{4}$. Compound $\underline{4}$ (0.01 mole) could be successfully cyclised into $\underline{5}$ on refluxing (2h) in acetic (30 ml)-hydrochloric acid (2 ml) mixture. Compound $\underline{1}$ (0.01 mole) coupled with aromatic diazonium chlorides to yield products which may be formualted as <u>6</u> or isomeric <u>7</u>. IR spectrum however could be utilized to rule out structure <u>7</u> as it indicated the presence of two CN groups. Attempted cyclization of <u>6</u> into <u>7</u> on reflux in acetic acid was unsuccessfull. Compound <u>6</u> (0.01 mole) was converted into <u>8</u> on refluxing (2h) in acetic (30 ml)-hydrochloric acid (2 ml) mixture most likely via intermediacy of <u>7</u>. Compound <u>7a</u> was obtained as a by-product from reaction of <u>9</u> (0.01 mole) with malononitrile (0.01 mole) in refluxing ethanol (20 ml) catalyzed with a few drops of

piperidine for 3h. The major product was however compound $\underline{6}a$. Compound $\underline{9}$ was obtained via coupling of the imidate $\underline{10}$ with benzenediazonium chloride.

Compound <u>1</u> (0.01 mole) reacted with 0.01 mole of either phenyl isothiocyanate or benzoyl isothiocyanate in refluxing dioxane (30 ml) for 3 h to yield the pyrimidines <u>11a</u>,b respectively. Compounds <u>11a</u>,b are assumed to be formed via addition of amino function in <u>1</u> to the unsaturated linkage in the isothiocyanate affording <u>12</u> which cyclized via loss of ethanol into <u>11</u>.

Compound <u>1</u> (0.01 mole) reacts with malononitrile (0.01 mole) in refluxing ethanol (20 ml) catalyzed with few drops of piperidine for 3 h to give a 1:1 adduct. Several possible structures seemed possible. Structure <u>13</u> was established based on identity of the reaction product with the product of reaction of compound <u>10</u> (0.01 mole) with 3-amino-2,4-dicyanocrotononitrile (0.01 mole) in refluxing ethanol (20 ml) catalyzed with a few drops of piperidine for 3 h.

All compounds described were obtained in good yields and a variety of new heterocycles because now available.

Compound*	Solvent	Mp(⁰ C)	Yield (%)	Mol Formula	IR, selected bands (cm ⁻¹)
3	ethanol	140	80	C ₁₀ H ₉ N ₄ O ₂ Cl ₃	3460, 3320 (NH ₂), 2210 (CN), 1690(C=O)
<u>4</u>	ethanol	190	80	^C 9 ^H 12 ^N 6 ^O 2	3450, 3320(NH ₂),2210(CN), 1680 (CO).
<u>5</u>	DMF/H ₂ O	>300	65	^С 7 ^Н 6 ^N 6 ^O	3460(OH); 3320, 3220 (NH ₂ ,NH) 2210 (CN), 1680 (C=O).
<u>6</u> a	ethanol	270	70	C ₁₄ H ₁₃ N ₅ O ₂	3340, 3220 (NH ₂ , NH), 2220, 2210 (two CN), 1720 (C=O).
<u>6</u> b	methanol	245	80	C ₁₅ H ₁₅ N ₅ O ₂	3340, 3240 (NH ₂ , NH), 2220, 2210 (two CN), 1710 (C=O).
7a	ethanol	>300	40	C ₁₄ H ₁₃ N ₅ O ₂	3340,3240(NH ₂ ,NH),2220(CN),1710(C=O)
<u>8</u> a	acetic acid	198	80	C ₁₂ H ₈ N ₄ O ₃	3460 (OH); 3340, 3240 (NH ₂), 2220 (CN) and 1690 (C=O).
<u>8</u> b	acetic acid	>300	70	C ₁₃ H ₁₀ N ₄ O ₃	3520 (OH), 3400, 3200 (NH ₂), 2220 (CN), 1680 (C=O).
<u>11</u> a	ethanol	>300	60	C ₁₃ H ₈ N ₄ OS	3340, 3320 (NH ₂), 2225, 2200 (two CN), 1710 (C=O).
<u>11</u> b	DMF/H ₂ O	>300	65	C ₁₄ H ₈ N ₄ O ₂ S	br 3340-3200 (NH ₂), 2220, 2200 (two CN), 1690 (C=O).
<u>13</u>	acetic acid	>300	70	C ₁₁ H ₁₁ N ₅ O ₂	3400, 3300 (NH ₂); 2220, 2200 (CN), 1700 (C=O).

Table : List of compounds newly synthesized.

* Satisfactory elemental analyses and ¹H-NMR for all the newly synthesized compounds were obtained.

REFERENCES

- 1. M.A.E. Khalifa, E.M. Zayed, M.H. Mohamed and M.H. Elnagdi, J. Heterocyclic Chem., 1983, 20, 1571.
- 2. N.S. Ibrahim, M.H. Mohamed and M.H. Elnagdi, Archv. Pharm., 1986, in press.
- 3. K. Gewald, U. Hain and M. Gruner, Chem. Ber., 1985, 118, 2198.
- 4. M.H. Elnagdi, H.A. Elfahham, S.A. Ghozlan and G.E.H. Elgemeie, J. Chem. Soc. Perkin, Trans., 1, 1982, 2667.
- 5. K.U. Sadek, S.M. Fahmy, R.M. Mohareb and M.H. Elnagdi, J. Chem. Eng., 1984, 29, 101.

Received, 11th December, 1986