ON THE CONFIGURATION AND THE CONFORMATION OF 2-ACYLINDAZOLE ARYLHYDRAZONES

*. Giuseppe Cusmano , Gabriella Macalusa , Werner Hinz , and * Silvestre Buscemi

* Istituto di Chimica Organica - Facolta di Scienze - Universita di Palermo, Via Archirafi, 20, 90123, Palermo, Italy **t*** Department of Chemistry, McGill University, 801 Sherbrooke street West, Montreal. **PO,** Canada, H3A 2K6 **Department of Chemistry, McGill University, 801 Sherbrooke
Street West, Montreal, PQ, Canada, H3A 2K6
Abstract - The <u>Z</u> configuration of 2-acylindazole
ary hydrazones 3 was assigned on the basis of solvent

arylhydrazones 3 was assigned on the basis of solvent effects on their 1 H-nmr spectra. Due to free rotation around the N-C bond, the title compounds exist in a solvent dependent equilibrium between the intramolecular N-H bonded conformer 6 and its rotamers.

In a previous paper, we described the 1,3-addition reaction of indazole 1 with nitrilimines 2a, 2b and 2d to give 2-acylindazole phenylhydrazones 3, and the further transformation of hydrazones 3 into 1-phenyl-5-(o-aminophenyl)-1.2.4-triazole derivatives 4 and into **1.2.4-triazolo[1,5-flphenanthridines** 5. 1 The hydrazone structure of compounds 3a, 3b and 3d had been confirmed by analytical and spectral data as well as by the structures of products 4 and 5 obtained.

However, since the Z configuration of hydrazones 3 plays an important role in the postulated acid catalysed rearrangement of 3 to give $\textbf{4}^{1}$, an investigation of the structure of intermediates 3, involving l_{H-nmr} spectroscopy and infrared spectroscopy **was** warranted.

For the purpose of this study, additional hydrazones 3c and 3e-h were prepared following the established procedure.¹ The ¹H-nmr data in CDC1₃ confirm the 2-substituted indazole structure for 3a-h : \underline{H} -4 and \underline{H} -7 are distinct and display the expected chemical shifts, for 3b-g H-3 was found downfield from H-3 for the parent compound indazole and the characteristic $^5J_{H3-\mu7}$ was determined to be ca 1 Hz in all cases, as required² (see Experimental).

The following tautomeric structures are conceivable for adducts 3 : **hydrazones 6-8 and the diazo tautomer 9, for 3b-h also the enolic tautomer 10.**

⁶(**Z N-H bonded**)

⁷(**1 N-H free**)

8a (E)

 $N-1$ $\sqrt{2}$

Ph

 $8b-h$ (E)

 ϵ

 $\ddot{\cdot}$

Structure 9 is immediately ruled out by the presence of a low field signal in the 1 H-nmr spectrum (N-H or O-H), while infrared data exclude the enolic structure 10.³ Carbonyl stretching frequencies in CHC1₃ at ca 1710 cm⁻¹ (3b,c) and ca 1680 cm^{-1} (3d-h) (see Table) represent conjugated, non-hydrogen bonded ester and ketone carbonyl absorptions, respectively. This also presents first evidence against structure 8, in which the $E -$ configuration of the hydrazone should, in the case of 3b-h, lead to a strong intramolecular N-H---O hydrogen bond. 4

The 1 H-nmr chemical shift values for the N-H and H-3 protons for hydrazones 3a-h in solvents of increasing polarity (benzene, chloroform, acetone, dimethyl sulfoxide) are given in the Table.

Frequencies for Hydrazones 3a-h

	Ar	R^{\bullet}	R''	δ N-H				$H-3$				σ $c = 0$
				C_6D_6		$CDCl3 C3D6O$ DMSO		C_6D_6		$CDCl_3$ C ₂ D ₆ O DMSO		cm^{-1}
3a	Ph	Ph	H			11.17 10.65 10.37 10.01		7.30	8.09	8.44	8.68	$-$
3b	Ph	$CO2Et$ H				13.07 12.66 12.07 11.02		8.84	8.86	8.84	8.70	1710
Зс	Ph	$CO2Me$ H				13.09 12.73 12.08 11.04		8.79	8.88	8.84	8.70	1712
3d	Ph	COMe	H			13.36 13.08 12.54 11.36		9.09	8.99	8.87	8.61	1680
Зе	$4 - C1 - C_6H_A$	COMe	- H			13.24 13.18 12.61 11.36		9.08	9.00	8.87	8.60	1680
3f	$4-Me-C6HA$	COMe	H			13.39 13.02 12.52 11.33		9.11	8.98	8.87	8.60	1680
3g	$4-MeO-C6HA$ COMe		н			13.37 13.03 12.49 11.28		9.16	8.98	8.86	8.59	1675
3h	Ph	COMe	Me	10.58		9.96 10.41 10.76						1680

Figure 1 shows the dependence of the chemical shift values of the $N-H$ protons of compounds 3a-h upon the solvent used. For compounds 3a-g a marked upfield shift is observed in the series benzene - dimethyl sulfoxide, characteristic for the presence of an intramolecular hydrogen bond⁵ (structure 6). For the 3-methyl derivative 3h, the bulky substituent in the 3-position does not permit the near coplanar arrangement required by conformer 6 and thus does not allow the formation of a strong intramolecular hydrogen bond. This **was** confirmed by the chemical shift value for the N-H resonance of 3h being concentration dependent while this was not the case for derivatives 3a-g (see Experimental). Evidently, if configuration 8 were correct, a 3-substituent should not affect the then present N-H---0 hydrogen bond **(as** in structure 8b-h). Furthermore, the chemical shift values for the $N-H$ resonance for compound 3a follow the general pattern, in the absence of either ester or ketone functionality.

Figure 2 depicts the dependence of the chemical shift values for protons H-3 upon the solvent used. Again, for compounds 3b-g an intramolecular hydrogen bond is indicated, as present in structure 6 , where $H-3$ protons experience the deshielding effect of the coplanar carbonyl group. For the phenyl derivative 3a an at first sight surprising pattern is observed.

Figures 1 + 2: Graph of chemical shift values as a function of the solvent : Benzene (8). Chloroform (Cl, Acetone (A), Dimethyl sulfoxide (Dl. Figure 1 : $N-\underline{H}$ resonances. Figure 2 : $\underline{H}-3$ resonances.

In nonpolar solvents, with the predominant conformer being 6 , H-3 is ideally located within the shielding cone of the benzene ring, which, sterically, will be forced into a position perpendicular to the plane of the molecule. With increasing solvent polarity, the intramolecular N-H---N hydrogen bond is broken and the coplanarity is destroyed, leading to a downfield shift of the H-3 resonance also as a function of the interaction between $H-3$ and the solvent.² Electronwithdrawing and electrondonating substituents on the phenylhydrazone moiety (3d-gl proved to have only a minor effect on the strength of the hydrogen bond.

 $-1286-$

The observed solvent effects can be well interpreted considering the hydrazones $3a-q$ existing as their $z -$ isomers. Due to free rotation around the N-C bond, the hydrazones exist in a solvent dependent equilibrium between the intramolecular N-H bonded rotamer 6 and the N-H free **7,** whereby the **N-5** and the H-3 chemical shift values represent a weighted time average for the rapid exchange between 6 and its rotamers.

EXPERIMENTAL

Melting points were determined with a Kofler hot-stage apparatus; ir spectra were recorded on a Perkin-Elmer infrared spectrometer (model 297), solutions being prepared by dissolving 0.03 mmol of the corresponding hydrazone in 1 ml of chloroform; uv spectra (ethanol) were determined with a Varian Superscan 3 spectrophotometer; ¹H-nmr spectra were recorded on a Varian XL 200 FT NMR spectrometer (operating at 200.057 MHz; TMS as internal standard), acquisition time 3,072 s, spectral window 3000.3 Hz, number of points 18,432 , pulse width 4s, solutions being prepared by dissolving 0.03 mmol of the corresponding hydrazone in 1 ml of benzene-d₆, chloroform-d, acetone-d₆ or dimethyl sulfoxide- d_{ϵ} .

General Method for the Preparation of the 2-Acylindazole Arylhydrazones 3. Compounds 3 were prepared according to the procedure described previously¹ for 3a,b,d, by treatment of 1 with equimolar amounts of suitable hydrazidoyl chloride^{1,6} and threefold excess of triethylamine in anhydrous THF, and were crystalized from ethanol.

Compound 3a (Ar = Ph, R' = Ph, R" = H) (yield 50%), mp 104° C; ¹H-nmr (CDCl₃) 6: 6.91-7.42 (m, 10H, ArH), 7.62 (m, 2H, ArH), 7.71 and 7.86 (2m, 2H, H-4 and H-7), 8.09 $(d, 1H, \underline{H}-3, 5J=1.9 \text{ Hz})$, 10.65 (s, 1H, N \underline{H}); uv nm λ \max (log ε) : 232sh(4.38), 296(4.20).350(4.29).

Compound 3b (Ar = Ph, R' = CO₂Et, R" = H) (yield 77%), mp 128°C; ¹H-nmr $(CDC1₃)$ **S** : 1.47 (t,3H, OCH₂CH₃), 4.45 (q,2H, OCH₂CH₃), 7.04-7.35 (m,7H,Ar<u>H</u>), 7.72-7.77 (m, 2H, H-4 and H-7), 8.86 (d, 1H, H-3, 5 J=0.9 Hz), 12.66 (s, 1H, NH); uv nm λ _{max} (log ε) : 229(4.21), 286(4.10), 356(4.32).

Compound $3c$ $(K = Ph, R' = CO_2Me, R'' = H)$ (yield 90%), mp 142°C; ¹H-nmr $(CDC1₃)$ 6 : 3.99 (s,3H, $OCH₂$), 7.05-7.41 (m,7H, ArH), 7.73-7.76 (m, $2H$, $H₂$ and $\frac{H}{1}$, 8.88 (d, 1H, $\frac{H}{2}$ - 3, 5 J = 1.9 Hz), 12.73 (s, 1H, NH₁); uv nm λ _{max} (log ε) : 230(4.21), 285(4.11),357(4.34). Anal. Calcd. for $C_{16}H_{14}N_4O_2$: C, 65.29; H, 4.80; N, 19.04. Found : C, 65.35; H, 4.82; N, 18.95.

Compound 3d (Ar = Ph, R' = COMe, R" = H) (yield 93%), mp 140°C; 1 H-nmr $(CDC1₂)$ 6 : 2.72 (s,3H,COCH₂), 7.07-7.36 (m,7H,ArH), 7.71-7.75 (m,2H,H-4 and H-7 , 8.99 (d, 1H, H-3 , 5J=0.9 Hz), 13.08 (s, 1H, NH); uv nm λ max (log ϵ) : 234(4.16), 291(4.10),367(4.36).

Compound 3e (Ar = 4 -Cl-C₆H₄, R' = COMe, R" = H) (yield 80%), mp 178°C; ¹H-nmr $(CDC1₃)$ 6 : 2.71 (s,3H,COC $\frac{H}{3}$), 7.10-7.32 (m,6H,Ar $\frac{H}{1}$), 7.68-7.77 (m,2H, $\frac{H}{1}$ -4 and - H-7). 9.00 (d,lH.X-3,5~=0.9 Hz), 13.18 (s.lH,NH); **uv** nm *h* max (log **C**) : 236(4.18), 291(4.17),368(4.41). Anal. Calcd. for $C_{16}H_{13}N_4$ OCl : C, 61.44; H, 4.19; N, 17.91. Found : C, 61.55; H, 4.21; N. 17.86.

Compound 3f (Ar = 4-Me-C₆H₄, R' = COMe, R["] = H) (yield 92%), mp 175°C; ¹H-nmr $(CDC1₃)$ 6 : 2.35 (s,3H,C \underline{H}_3),2.70 (s,3H,COC \underline{H}_3), 7.09-7.38 (m,6H,Ar \underline{H}), 7.73-7.77 $(m, 2H, \underline{H}-4$ and $\underline{H}-7)$, 8.98 (d, 1H, $\underline{H}-3$, $5J=1.0$ Hz), 13.02 (s, 1H, NH); uv nm λ_{max} (logs) : $236(4.16)$, $291(4.12)$, $373(4.40)$. Anal. Calcd. for $C_{17}H_{16}N_4O$: C, 69.84; H, 5.52; N, 19.17. Found : C, 70.00; H, 5.53; N, 19.24.

Compound 3g (Ar = $4-MeO-C_6H_4$, R' = COMe, R" = H) (yield 70%), mp 134°C; ¹H-nmr $(CDC1₃)$ 6 : 2.69 (s,3H, $COCH₃$), 3.82 (s,3H, $OCH₃$),6.92-7.41 (m,6H, ArH), 7.69-7.76 $(m, 2H, \underline{H}-4$ and $\underline{H}-7)$, 8.98 (d, 1H, $\underline{H}-3$, $5J=0.9$ Hz), 13.03 (s, 1H, NH); uv nm λ max $(\log \epsilon)$: 234(4.14), 296(4.12), 383(4.35). Anal. Calcd. for $C_{17}H_{16}N_4O_2$: C, 66.22; H, 5.23; N, 18.17. Found : C, 66.41; H, 5.19; N, 18.25.

Compound 3h $(Ar = Ph, R' = COMe, R'' = Me)$ (yield 72%), mp 188°C; ¹H-nmr $(CDC1₃)$ 6 : 2.52 (s,3H,CH₃),2.69 (s,3H,COCH₃), 7.03-7.40 (m,7H,ArH), 7.64-7.68 $(m, 2H, \underline{H}-4$ and $\underline{H}-7)$, 9.96 (s, 1H, N<u>H</u>); (CDC1₃ ca 1 mg / 0.5 ml) δ : 9.93 (s, 1H, N<u>H</u>); uv nm **A** *max* (log **E**) : **232sh(4.18),285sh(4.00),345(4.36).** Anal. Calcd. for $C_{17}H_{16}N_4O: C$, 69.84; H, 5.52; N, 19.17. Found : C, 69.97; H, 5.53; N, 19.14.

ACKNOWLEDGEMENT

We thank Ministero P.I. (Rome) for support.

REFERENCES AND NOTES

- 1. M. Ruccia, N. Vivona, G. Cusmano, and A. M. Almerico, Heterocycles, 1978, 9, 1577.
- 2. **J.** Elguero. A. Fruchier, **and** R. Jacquier, Bull. Soc. Chim. France, 1966, 2075.
- 3. A. D. Mitchell and D. C. Nonhebel, Tetrahedron Lett., 1975, 3859; Tetrahedron, 1979, 35, 2013 and references cited therein.
- 4. P. Courtot, R. Pichon, and J. Le Sant, Tetrahedron Lett., 1979, 1591.
- 5. **0.** L. Chapman, R. W. King, W. J. Welstead, Jr., and T. J. Murphy, Chem. Soc.. 1964, 86, 4968: R. N. Butler and S. M. Johnston, J. Chem. Soc. Perkin Trans. I, 1984, 2109.
- 6. For the general procedure adopted in the synthesis of additional hydrazidoyl chlorides : W. Dieckmann and L. Platz, Chem. Ber., 1905, 38, 2986.

Received, 6th January, 1987