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Abstract - The 2 configuration of 2-acylindazole 

arylhydrazones 3 was assigned on the basis of solvent 

effects on their 'H-nmr spectra. Due to free rotation 

around the N-C bond, the title compounds exist in a solvent 

dependent equilibrium between the intramolecular N-H bonded 

conformer 6 and its rotamers. 

In a previous paper, we described the 1,3-addition reaction of indazole 1 with 

nitrilimines Pa, 2b and Zd to give 2-acylindarole phenylhydrazones 3, and the 

further transformation of hydrazones 3 into 1-phenyl-5-(2-aminopheny1)- 

1.2.4-triazole derivatives 4 and into 1.2.4-triazolo[1,5-flphenanthridines 5. 
1 

The hydrazone structure of compounds 3a. 3b and 3d had been confirmed by 

analytical and spectral data as well as by the structures of products 4 and 5 

obtained. 

However, since the Z configuration of hydrazones 3 plays an important role in 

the postulated acid catalysed rearrangement of 3 to give 4l. an investigation of 

1 the structure of intermediates 3, involving H-nmr spectroscopy and infrared 

spectroscopy was warranted. 

For the purpose of this study, additional hydrazones 3c and 3e-h were prepared 

following the established procedure.' The '11-nmr data in CDC13 confirm the 

2-substituted indazole structure Eor 3a-h : g-4 and g-7 are distinct and display 

the expected chemical shifts, for 3b-g X-3 was found downfield from X-3 for 

5 the parent compound indazole and the characteristic JH3-", was determined to be 

ca 1 Hz in all cases, as required2 (see Experimental). - 
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Structure 9 is immediately ruled out by the presence of a low field signal in 

the 'H-nmr spectrum I N-H or 0-H , while infrared data exclude the enolic 

structure 1 0 . ~  Carbonyl stretching frequencies in CHC13 at 1710 cm-' I 3b.c 1 

and 1680 cm-' I 3d-h ) (see Table) represent conjugated, non-hydrogen bonded 

ester and ketone carbonyl absorptions, respectively. This also presents first 

evidence against structure 8, in which the - configuration of the hydrazone 
should, in the case of 3b-h. lead to a strong intramolecular N-H---0 hydrogen 

bond. 4 

The '~-nmr chemical shift values for the N-H and H-3 protons for hydrazones 3a-h 

in solvents of increasing polarity ( benzene, chloroform, acetone. dimethyl 

sulfoxide ) are given in the Table. 

Table : Chemical Shift Values for N-X and X-3 Protons and Carbonyl Stretching 

Frequencies for Hydrazones 3a-h 

3a Ph Ph H 

3b Ph C02Et H 

3c Ph C02Me H 

3d Ph COMe H 

3e 4-C1-C6H4 COMe H 

3f 4-Me-C6H4 COMe H 

39 4-Me0-C6H4 COMe H 

3h Ph COMe Me 

' N-H 
C606 CDC13 C3D60 DMSO 
---- 
11.17 10.65 10.37 10.01 

13.07 12.66 12.07 11.02 

13.09 12.73 12.08 11.04 

13.36 13.08 12.54 11.36 

13.24 13.18 12.61 11.36 

13.39 13.02 12.52 11.33 

13.37 13.03 12.49 11.28 

10.58 9.96 10.41 10.76 

' H-3 
C6D6 CDC13 C3D60 DMSO ---- 
7.30 8.09 8.44 8.68 

8.84 8.86 8.84 8.70 

8.79 8.88 8.84 8.70 

9.09 8.99 8.87 8.61 

9.08 9.00 8.87 8.60 

9.11 8.98 8.87 8.60 

9.16 8.98 8.86 8.59 
-- -- -- -- 

Figure 1 shows the dependence of the chemical shift values of the N-g protons of 

compounds 3a-h upon the solvent used. For compounds 3a-g a marked upfield s h ~ f t  

is observed in the series benzene - dimethyl sulfoxide, characteristic for the 
presence of an intramolecular hydrogen bond5 (structure 6 ) .  For the 3-methyl 

derivative 3h, the bulky substituent in the 3-position does not permit the near 

coplanar arrangement required by conformer 6 and thus does not allow the 

formation of a strong intramolecular hydrogen bond. This was confirmed by the 

chemical shift value for the N-X resonance of 3h being concentration dependent 

while this was not the case for derivatives 3.3-9 (see Experimental). Evidently, 

if configuration 8 were correct, a 3-substituent should not affect the then 

present N-H---0 hydrogen bond ( a s  in structure 8b-h). Furthermore, the chemical 



shift values for the N-X resonance for compound 3a follow the general pattern. 

in the absence of either ester or ketone functionality. 

Figure 2 depicts the dependence of the chemical shift values for protons 5-3 

upon the solvent used. Again, for compounds 3b-g an intramolecular hydrogen bond 

is indicated, as present in structure 6, where g-3 protons experience the 

deshielding effect of the coplanar carbonyl group. For the phenyl derivative 3a 

an at first sight surprising pattern is observed. 

FIGURE 1 FIGURE 2 

Figures 1 + 2: Graph of chemical shift values as a function of the solvent : 
Benzene (8). Chloroform (Cl, Acetone (A), Dimethyl sulfoxide (Dl. 

Figure 1 : N-g resonances. Figure 2 : X-3 resonances. 

In nonpolar solvents, with the predominant conformer being 6, 5-3 is ideally 

located within the shielding cone of the benzene ring, which, sterically, will 

be forced into a position perpendicular to the plane of the molecule. With 

increasing solvent polarity, the intramolecular N-H---N hydrogen bond is broken 

and the coplanarity is destroyed, leading to a downfield shift of the 5-3 

resonance also as a function of the interaction between g-3 and the solvent. 2 

Electronwithdrawing and electrondonating substituents on the phenylhydrazone 

moiety (3d-gl proved to have only a minor effect on the strength of the hydrogen 

bond. 
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The observed solvent effects can be well interpreted considering the hydrazones 

3a-g existing as their Z - isomers. Due to free rotation around the N-C bond, 
the hydrazones exist in a solvent dependent equilibrium between the 

intramolecular N-H bonded rotamer 6 and the N-H free 7 ,  whereby the N-5 and the 

H-3 chemical shift values represent a weighted time average for the rapid - 

exchange between 6 and its rotamers. 

EXPERIUENTAL 

Melting points were determined with a Kofler hot-stage apparatus; ir spectra 

were recorded on a Perkin-Elmer infrared spectrometer (model 297), solutions 

being prepared by dissolving 0.03 mmol of the corresponding hydrazone in 1 ml of 

chloroform; uv spectra (ethanol) were determined with a Varian Superscan 3 

spectrophotometer; l~-nmr spectra were recorded on a Varian XL 200 FT NMR 

spectrometer (operating at 200.057 MHz; TMS as internal standard), acquisition 

time 3,072 s, spectral window 3000.3 Hz, number of points 18,432 , pulse width 
4s, solutions being prepared by dissolving 0.03 mmol of the corresponding 

hydrazone in 1 ml of benzene-d6, chloroform-d, acetone-d or dimethyl 

sulfoxide-dc 

General Method for the Preparation of the 2-Acylindazole Arylhydrazones 3. 

Compounds 3 were prepared according to the procedure described previously1 for 

3a,b,d, by treatment of 1 with equimolar amounts of suitable hydrazidoyl 

chloridelp6 and threefold excess of triethylamine in anhydrous THF, and were 

crystalized from ethanol. 

Compound 3a (Ar = Ph, R' = Ph, R" = H) (yield 50$), mp 104'C; '~-nmr (CDC13) 6 : 

6.91-7.42 (m,lOH,ArH), 7.62 (m,ZH,ArH), 7.71 and 7.86 (Zm.2H.X-4 and g-7), 8.09 

5 (d.1H.g-3, J=1.9 Hz), 10.65 (s,lH,NH): uv nm h max (log E ) : 232sh(4.38), 

296(4.20).350(4.29). 

Compound 3b (Ar = Ph, R' = C02Et, R" = H) (yield 77%), mp 128.C; '~-nmr 

(CDC13) S : 1.47 (t,3H,0CH2CH3), 4.45 (q,2H,0CX2CH3), 7.04-7.35 (m,7H,ArX). 

7.72-7.77 (m,2H,H-4 and g-7), 8.86 (d,lH.H-3,5~=0.9 Hz), 12.66 (s,lH,Ng); uv nm 

A max (logE : 229(4.21),286(4.10),356(4.32). 



Compound 3c (Ar = Ph, R '  = C02Me, R" = H) (yield go%), mp 142'C; 'g-nmr 

(CDC13) 6 : 3.99 (s,3H,0CX3), 7.05-7.41 (m,7H8ArH), 7.73-7.76 (m,ZH,g-4 and 

5 H-71, 8.88 (d.1H.H-3, J=1.9 Hz), 12.73 (s,lH,NH); uv nm max (log e ) : - 

230(4.21), 285(4.11),357(4.34). Anal. Calcd. for C16H14N402 : C, 65.29; H, 4.80; 

N, 19.04. Found : C, 65.35; H, 4.82; N, 18.95. 

Compound 36 (Ar = Ph, R '  = COMe, R" = H) (yield 93%), mp 140'C; l~-nmr 

(CDCl,) 6 : 2.72 (s,3H,COCE13), 7.07-7.36 (m,7H,ArX). 7.71-7.75 (m,2H,H-4 and 

5 H-7). 8.99 (d,lH,H-3, J=0.9 Hz), 13.08 (s,lH,NX); uv nm h max (loge ) : - 
234(4.16), 291(4.10),367(4.36). 

Compound 3e (Ar = 4-C1-C H R '  = COMe, R' = H) (yield 80%), mp 178'C; l~-nmr 6-4 ' 
(CDC13) 6 : 2.71 (s,3H,COCH3), 7.10-7.32 (m,6H,ArH), 7.68-7.77 (m.2H.H-4 and 

H-7). 9.00 (d,lH.X-3,5~=0.9 Hz), 13.18 (s.lH,NH); uv nm h max (log C ) : - 
236(4.18), 291(4.17),368(4.41). Anal. Calcd. for C16H13N40C1 : C, 61.44; H, 

4.19; N, 17.91. Found : C, 61.55; H, 4.21; N. 17.86. 

Compound 3f (Ar = 4-Me-C6H4, R '  = COMe, R" = H) (yield 92%), mp 175'C; l~-nmr 

(CDC13)6 : 2.35 (s,3H,CX3),2.70 (S.~H.COC~~). 7.09-7.38 (m.6H.ArX). 7:73-7.77 

5 (m.2H.g-4 and - 7 ,  8.98 (d.1H.H-3, J=1.0 Hz), 13.02 (s,lH,NH); uv nm max 

(loge ) : 236(4.16).291(4.12).373(4.40). Anal. Calcd. for C17H16N40 : C, 69.84; 

H,  5.52; N, 19.17. Found : C, 70.00; H, 5.53; N, 19.24. 

Compound 39 (Ar = 4-Me0-C6H4, R' = COMe, R" = H) (yield 70%). mp 134.C; '~-nrnr 

(CDC13) 6 : 2.69 (s,3H,COCH3), 3.82 (s,3H,0CH3),6.92-7.41 (m.6H.ArH). 7.69-7.76 

5 (m,2H.Ej-4 and g-71, 8.98 (d,lH,z-3, J=0.9 Hz), 13.03 (s,lH,NH); uv nm max 

(loge ) : 234(4.14),296(4.12),383(4.35). Anal. Calcd. for C17H16N402 : C ,  66.22; 

H, 5.23; N, 18.17. Found : C, 66.41; H, 5.19; N, 18.25. 

Com~ound 3h ( A r  = Ph ,  R' = COMe, R" = Me) (yield 72%), mp 188'C; l~-nmr 

(CDC13) 6 : 2.52 (s.3H.Cg3),2.69 (s,3H,COCH3), 7.03-7.40 (m.7H.ArH). 7.64-7.68 

(m,2H.g-4 and H-7). 9.96 (s,lH.NH); (CDC13 1 mg / 0.5 ml) 61 9.93 (5.1H.Ng); 

uv nm A max (log E ) : 2 3 2 s h ( 4 . 1 8 ) , 2 8 5 s h ( 4 . 0 0 ) , 3 4 5 ( 4 . 3 6 ) .  Anal. Calcd. for 

C H N 0 : C, 69.84; H. 5.52; N, 19.17. Found : C, 69.97; H, 5.53; N. 19.14. 17 16 4 
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