STRUCTURE AND BASICITY OF 2-GUANIDINOBENZIMIDAZOLES

Carmen Acerete^{*}, Javier Catalán, Fernando Fabero, and Marta Sánchez-Cabezudo *Depmtmnento de @tCmima, Facultad* **de** *Ciencias, hiversidad Autdnoma de Madrid, Cmtobtanco, 28049 Madrid, Spain*

Rosa Maria Claramunt

@timica orgrtiica, Facuttad de Ciencias, Uniuersidad NacionaZ **de** *Educaci6n a Distmcia, Ciudad Universitmia, 28040 Madrid, Spain*

Jose Elguero

Institute de Wmica Mddica, CSIC, Juan de to *Cierva* 3, *28006 Madrid, Spain*

Abstract - A theoretical and experimental study of the basicity of three **2** guanidinobenzimidazoles has been carried out. The most abundant tautamer, the structure of the protonated molecule, and the reason of the relatively low pK_a **1 are** discussed. In addition, a careful **H** and **13C** nmr study provides information about the influence of intramolecular hydrogen bonds on annular tautomeric rates.

2-Guanidino benzimidazole **1** is a complex molecule for which, at least, three intramolecular hydrogenbonded structures can be written:

The first one, la, is a tautomer different from 1b and lc, whereas 1b and 1c are isomers interconvertible by rotations about C-N single bonds. In each structure there are two sp² nitrogen lone pairs, but one of them is involved in an intramolecular hydrogen-bond. The remaining one is susceptible of being protonated: in 1a and 1b it is a guanidine nitrogen whereas in 1c it is a benzimidazole nitrogen. The pK_a of 1 is $7.09.$ ¹

3 Guanidine izself **7** is a much stronger base (pK, = **14.38.' 14.63**) than the parent benzimidazole **8 4** IpK = **5.56).** Thus, the **7.09** value can correspond either to a guanidine weakened by the benzimidazole substituent or to a benzimidazole strengthened by the guanidino substituent effect. For instance, carbamoylguanidine **9**, which protonates in the guanidine nitrogen, has a pK_{, 7} = 7.85³ and 2aminobenzimidazole 10 which, in turn, protonates in the benzimidazole nitrogen, has a pK_a = 7.39.⁴

The first problem that must be solved is **the** structure of the cations obtained by protonation of la, 1b and 1c. Within the INDO framework⁵ and using the Rinaldi and Rivail⁶ technique of optimization, the geometries of the neutral molecules and those of the corresponding cations have been calculated. These planar molecules have been drawn with the **CHEH-X** software: 7

The most interesting featwe is that the same cation **2** is always obtained when the protonated forms are optimized. This is an important result with which it is possible to discuss the basicity of guanidinobenzimidazoles considering **mly** the structural characteristics of the three neutral forms. The results are gathered in Tables 1 and 2. Table 1 also contains the calculated dipole moments in Debyes and Table 2, the experimental pK_a values in water. The - ΔE_p values of Table 2 are calculated from
the energy values of Table 1. For instance, - ΔE_p (1a) = -73789.1 + 74180.2 = 391.1 kcal/mole. These
protonation en **zimidazole itself 8,** $-\Delta E_p$ **(INDO) = 375.6 kcal/mole whereas its PA = 225.6 kcal/mole.⁸**

Compound	Energies (Acal/mole)	Δг	$\mu(D)$		
1a 1b 1c $\mathbf{2}$	-73789.1 -73773.1 -73774.7 -74180.2	16.0 14.4	2.80 3.18 7.93		
3а 3Ь 3 _c 4	-84396.1 -84380.5 -84382.7 -84788.9	15.6 13.4	3.01 3.10 8.15		
5a 5b 6	-79092.3 -79076.7 -79483.7	0 15.6	2,71 3.01		

Table 1. Theoretical properties of **2-guanidinohenzimidaeoles**

Table 2. Theoretical protonation energies (kcal/mole) and pK_a's in water at 25[°]C

compound 3 is the 5.6-dimethyl derivative with its corresponding connnon cation **4.** Compound 5 is the 1-methyl derivative (common cation 6); due to the N-methylation, there is no 5c chelated structure, for this reason 5 was synthesized and studied.

Tautomerism

The ΔE values (Table 1) show that tautomer a is largely favoured in the gas-phase. Isomers **b** and **c** are of comparable energy. Since nothing is known about this problem from an experimental point of view, we must consider that the large ΔE values are a guarantee of the predominance of tautomer a. Water will stabilize the tautomer with the higher dipole moment, c, but not to the point to overcome the 15 kcal/mole of difference in energy.

1 a careful **H** and 13c **nmr** study has been carried out on compounds **1,** 3 and 5 in order to get some insight on their structures (Tables 3 and 4).

Compound	Freq.	Temp.	2			6		3a -	7a -	Guan. Others		
	75 MHz			24° C 159.1 [*] 113.5(b) 119.6 119.6 110.6(b) 141.7(vb) 133.2(vb) 159.0 [*]								
	50 MHz			24° C 159.1* 112.5(b) 119.6 ^a 119.6 ^a 112.5(b) 141(vb) 135(vb)						159.0		
	50 MHz			80° C 159.1 [*] 111.9(b) ^b 119.4 ^C 119.4 ^C 111.9(b) ^b 135.7(b) 135.7(b) 159.0 [*]								
				50 MHz $\left 24^{\circ}$ C 158.4 112.5(b) 126.8 ^d 126.8 ^d 112.5(b) not obs. not obs. 158.4 e								
				50 MHz 80°C 158.4 112.7 ^f 126.8 ⁹ 126.8 ⁹ 112.7 ^f 139.6 139.6 158.4							h	
$5 -$				50 MHz 24° C 158.1 ¹ 115.0 ¹ 119.0 ^k 120.1 ¹ 107.6 ^m 141.4 ^m 133.6 [°] 158.4							p	
a_1^1 = 159.0, a_3^3 = 7.3; b_3^1 = 159.9; a_3^1 = 159.0, a_3^3 = 7.4; a_3^1 = 4.4 (Me); a_3^1 = 125.4, a_3^3 = 5.1												
(H_4) (C-Me, $\delta = 19.8$); f_1^1 = 153.1; g_1^2 = 4.3 (Me); h_1^1 = 125.4, g_1^3 = 5.1 (H ₄) (C-Me, $\delta = 19.6$);												
13 4 = 2.0 (N-Me); 11 J = 159.9, 3 J = 6.6, 2 J = 2.6; k1 J = 159.6, 3 J = 7.6; 11 J = 158.4, 3 J = 7.2;												
m_1 = 159.7, 3 = 6.2, 2 = 2.5; n_3 = 7.9, 3 = 5.9; \degree complex multiplet due to couplings with the												
N-Me; P^1 J = 138.9 (N-methyl. δ = 27.9).												

Table 4. 13 C N.M.R. results (δ , ppm; J, Hz) (Solvent: DMSO-d_c)

All the N-H protons give rise to a very broad signal at about 6.5 ppm, thus preventing 1_H nmr to be used to discuss the tautomerism of these guanidines. However, compounds 1 and 2 show in ¹H but particularly in ¹³C nmr broad signals for "prototropic nuclei" (i.e., nuclei that became isochronous by rapid prototropic exchange). This fact has been observed for other 2-substituted benzimidazoles and has been explained by the existence of an intramolecular hydrogen bond between the substituent and the benzimidazole ring. As the three structures, a, b and c, have this type of bond, it cannot be used to decide between them.

Basicity

As can be seen in Table 2, compounds 1, 3 and 5, have similar pK_a values. This proves that c structures play a minor role in aqueous solution too. These structures, with their high dipole moments (about 8 D) would produce an extra-stabilization of the neutral forms of quanidinobenzimidazoles 1 and 3 in water with regard to that of 5. This stabilization would result in a significant lowering of the pK_a's of 1 and 3 compared to 5, a fact which is not observed.

Based on the effect of 5,6-dimethyl and 1-methyl substituents on the pK_a values (Table 2), it is possible to discuss qualitatively the protonation position in aqueous solution. It is important to note that if one assumes that cations 2, 4 and 6 lead, by deprotonation, to structures 1a, 3a and 5a, their pK_a 's can be directly compared, without statistical correction⁴ since, in all cases, only one proton is involved.

Two methyl groups in 5,6-positions produce an increase in the basicity of 0.23 pK₃ units, which is lower than that found when the pK_a's of benzimidazole 8 and 5,6-dimethylbenzimidazole 11 (pK_a = 5.98)⁴ are compared ($\Delta pK_a = 0.42$). On the other hand, the N-methylation effect in these guanidinobenzimidazoles ($\Delta pK_a = 0.21$) is significantly larger than that observed for the couple benzimidazole 8/1-methylbenzimidazole 12 (pK_a = 5.55; ΔpK_a = -0.31 taking into account the statistical factor). We consider these differences as a clear indication that guanidinobenzimidazoles do not protonate in the benzimidazole nitrogen.

In conclusion, the measured pX₃'s correspond to the basicity of guanidines 1a, 3a and 5a. To compare them to the $-\Delta E_p$ values (Table 2) it would be necessary to calculate theoretically a large collection of guanidines including most of those studied by Charton³ and by Taylor.² This work is now in

progress.¹⁰ From an empirical point of view, the Charton-Taylor equation, $pK_a = 14.18 - 22.58 \sigma$ provides an explanation of the substituent effect of benzimidazole: its base-weakening effect is due to its σ_{τ} value $(\sigma_{\tau} = 0.32)$.^{2,11}

EXPERIMENTAL

Theoretical Calculations. All calculations were performed at the UAM/IBM Centre (Madrid).

Basicity Measurements. The **pK** measurements were carried out in a Metrohm Herisan at 25 t O.2Oc under nitrogen atmosphere, by direct titration with 0.1 M Hcl. The guanidine concentration was about 5 mM. The ionic strength was maintained constant (0.1 M) with KC1. The pK₂ values are the averaged values of, at least, three determinations. They have been corrected for zero ionic strength by **means** of the Debye-Hückel equation: 1, 7.091 ± 0.003; 3, 7.324 ± 0.004; 5, 7.300 ± 0.005.

N.M.R. Measurements. The spectra *were* recorded in a Bruker Ab-200 and a Varian XL-300 supraconducting spectrometers (CSIC).

Synthesis. **2-cuanidinobenrimidazole** 1 (Aldrich G1,180-2) and **5,6-dimethyl-2-guanidinoben~imidazo1e** 3 (ABC S57311-6) are commercial products.

To a mixture of 0.876 g (0.005 moles) of **2-guanidinobenzimidazole.** 1.38 g (0.1 mole) of anhydrous potassium carbonate in 10 ml of acetone and 5 ml of water, 0.25 ml (0.0026 moles) of dimethyl sulfate were added and the suspension was stirred for 16 h at room temperature. The acetone was removed under **vacuum** and the aqueous solution extracted with chloroform. After evaporation of the organic solvent, 0.J g of crude 1-methyl derivative were obtained (Yield 32%). The product was purified by column chromatography on silica gel and eluted with chloroform-ethanol (9/11. From the aqueous layer, the unreacted initial **2-guanidinobenzimidazole** was recovered. **l-Methyl-2-guanidinOben~imida~o1e,** mp $152-154^{\circ}$ C (decomp).

REFERENCES

 1_A simultaneous measurement² gives $pK_a = 6.97 \pm 0.05$. 2~.~. Taylor and A.R. Wait, *J. Chm. Soc., Perkin Trans. 2, 1986,* 1765. 3~. Charton, *J.* Org. *Chem.,* 1965, *30,* 969. 4~. Catalan, J.L.M. Abboud and J. Elguero, *Ado. Heterocycl. Chem.,* 1987, 41, 187. 5. Catalán, J.L.G. de Paz and M. Yañez, J. Mol. Struct., THEOCHEM, 1984, 107, 257. 6~. Rinaldi and J.L. Rivail, *C.R. Hebd. Seances Acad. Sci., Sdr. C.,* 1972, 274, 1664. ⁷We acknowledge Drs P. Goya and I. Rozas for their help. The CHEM-X package is implemented on a Vax 11/750 computer and uses a SIGMEX CDL-6130/20 terminal provided with a hardcopy (Instituto "Rocasolano", CSIC). The Tables of angles and distances for all the optimized quanidinobenzimidazoles, 1a-6, are available on request. Those of compounds 1a (most stable tautomer) and 2 (common cation) are given in the Appendix. 8
R.W. Taft, personal communication. '5. Elguero, G. Uouquet and C. Marzin, *Tetrahedra Lett.,* 1975, 4085. ''5. Catalan, F. **Fabero,** M. Sanchez-Cabezudo and J. Elguero, unpublished results. 11 Our pK₂ values correspond to $\sigma_{\tau} = 0.30$ to 0.31.

Appendix

Received, 22nd January, 1987