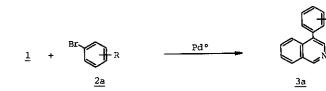

THE SYNTHESIS OF 4-SUBSTITUTED ISOQUINOLINE DERIVATIVES FROM DIETHYL (4-ISOQUINOLYL) BORANE

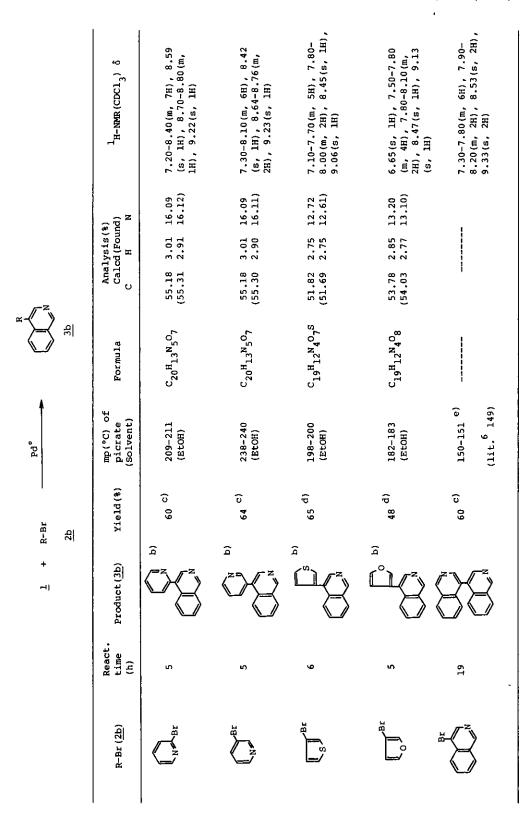
Minoru Ishikura, Izumi Oda, and Masanao Terashima Faculty of Pharmaceutical Sciences, Higashi-Nippon-Gakuen University, Ishikari-Tobetsu, Hokkaido 061-02, Japan

<u>Abstract</u>—— Syntheses of 4-substituted isoquinolines by the palladiumcatalyzed cross-coupling reactions of diethyl(4-isoquinolyl)borane with organic halides are described.


Few general methods for the synthesis of the 4-substituted isoquinoline system, a common structural unit of several isoquinoline alkaloids, have been devised.¹ In connection with our previous work,² it was envisioned that the cross-coupling reaction of diethyl(4-isoquinolyl)borane with organic halides in the presence of palladium catalyst would provide a versatile method for the direct introduction of a substituent into the 4-position of isoquinoline. We wish to report here simple and regioselective preparation of various 4-substituted isoquinoline derivatives (<u>3</u>) <u>via</u> diethyl(4-isoquinolyl)borane (<u>1</u>).³

The reaction of <u>1</u> (1 mol eq.) with aryl bromides (<u>2a</u>) (1.5 mol eq.) was conducted in the presence of powdered KOH (3 mol eq.), Bu_4NBr (0.5 mol eq.) and $Pd(Ph_3P)_4$ (0.1 mol eq.) in THF at reflux under nitrogen to give 4-arylisoquinolines (<u>3a</u>) in moderate to good yields as summarized in Table 1. The formation of other 4-substituted isoquinoline derivatives (<u>3b</u>) was also successful under the same conditions as shown in Table 2. The present procedure for the preparation of 4-aryl-1,2,3,4-tetrahydroisoquinolines is straightforward and simple as compared with the known methods.⁴

Table 1 Preparation of 4-arylisoquinolines (<u>3a</u>)


- R

R of 2a	React. time(h)	Yield of <u>3a</u> (%)*	mp(°C) (Solvent)	mp(°C) of picrate (Solvent)	Formula	Analysis(%) Calcd(Found) C H N	¹ H-NMR (CDCl ₃) δ
Н	6	70	78-80 (lit. ⁵ 82)				7.35-7.65(m, 7H), 7.70-8.00 (m, 2H), 8.42(s, 1H), 9.16 (s, 1H)
2-OMe	8	60	89-91 (acetone- hexane)		C ₁₆ H ₁₃ NO	81.68 5.57 5.95 (81.79 5.76 6.11	
^{2-NO} 2	8	58	oil	227-229 (EtOH)	C ₂₁ H ₁₃ N ₅ O ₉	52.61 2.73 14.6 (52.62 2.89 14.7	
4-NO ₂	6	64	162-163 (acetone- ether)	214-216 (EtOH)	^C 21 ^H 13 ^N 5 ^O 9	52.61 2.73 14.6 (52.62 2.89 14.6	
^{2-NH} 2	6	61	115-117 (acetone- ether)		C ₁₅ ^H 12 ^N 2	81.79 5.49 12.7 (82.02 5.58 12.5	
2-COOMe	6	55	oil	197-199 (EtOH)	C ₂₃ H ₁₆ N ₄ O ₉	56.10 3.28 11.3 (56.11 3.20 11.3	
4-COOMe	6	60	135-136 (acetone- hexane)		C ₁₇ H ₁₃ NO ₂	77.55 4.98 5.32 (77.63 5.01 5.26	
2-COCH ₃	5	45	oil	218-220 (Etoh)	C ₂₃ H ₁₆ N ₄ O ₈	57.98 3.39 11.7 (58.09 3.25 11.7	
4-COCH ₃	5	62	116-117 (acetone- hexane)		C ₁₇ H ₁₃ NO	82.57 5.30 5.66 (82.48 5.34 5.65	

• isolated yield by flash chromatography (hexane : AcOEt = 4 : 1)

Table 2 Preparation of 4-substituted isoquinolines (3b)

HETEROCYCLES, Vol 26, No. 6, 1987

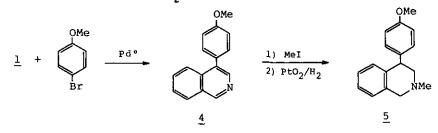
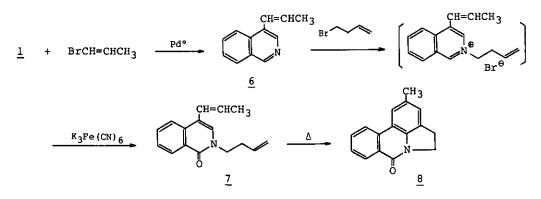

l _H -nmr (cdc1 ₃) δ	2.18(s, 3H), 5.06(br s, 1H) 5.40(br s, 1H), 7.20-7.60 (m, 2H), 7.70-8.00(m, 2H), 8.31(s, 1H), 9.05(s, 1H)	l.91(d, 3H, J=6 Hz), 6.19 (qd, 1H, J=6, 15 Hz), 6.90 (d, 1H, J=15 Hz), 7.30-8.10	(m. 4H), 8.48(s, lH),9.02 (s, lH) 6.95-8.20(m, llH), 8.62(s, lH), 9.03(s, lH)	7.20-7.90(m, 8H), 8.20(d, 1H, J=8 Hz), 8.65(s, 1H), 9.05(s, 1H)	1.35(t, 3H, J=7 Hz), 3.96 (q, 2H, J=7 Hz), 5.69(d, 1H, J=7 Hz), 6.43(d, 1H, 127 Hz), 7.40-8.10(m, 4H),
1 H-NMR	2.18(s, 3H) 5.40(br s, (m, 2H), 7. 8.31(s, 1H)	1.91(d, 3H, (qd, 1H, J= (d, 1H, J=1.	(m. ⁴ H), 8.48(s, (s, 1H) 6.95-8.20(m, 11H 1H), 9.03(s, 1H)	7.20-7.90(m LH, J=8 Hz) 9.05(s, LH)	1.35(t, 3H, (q, 2H, J=7 (H, J=7 Hz) J=7 Hz), 7.
Analysis Calcd(Found), H N	3.54 14.07 3.53 13.93)	3.54 14.07 3.52 14.15)			6.58 7.03 6.69 6.91)
Analysis Calcd(Fo C H	54.28 3 (54.32 3	54.28 3 (54.13 3			78.36 6 (78.19 6
Formula	c ₁₈ H ₁₄ N ₄ O ₇	c ₁₈ H ₁₄ N ₄ 07			c _{13^H13^{NO}}
mp(°C) of picrate (Solvent)	171-172 (EtOH)	189-191 (EtOH)	78-80 ^{e)} (benzene) (lit. ⁷ 80-82)	63-65 ^{e)} (ether- hexane)	(115. 00-02) 104- f) 107/1
Yield(%)	70 ^d)	72 đ)	65 d)	77 ^{d)}	59 d)
Product (<u>3b</u>)	H _{C-O} CH ₃ b)		H L L L L L L L L L L L L L L L L L L L	p)	oet Noet
React. time (h)	μî	4	υ	Q	ν
R-Br (<u>2b</u>)	₽₽r	сн ₃ сн=снвг ^{а)}	Ph, C=C,Br H / C=C,Br	PhC≡CBr	Eto

Table 2 Preparation of 4-substituted isoquinolines (<u>3b</u>) (continued)


,

AcOEt = 1 : 1) d) isolated yield by flash chromatography (hexane : AcOEt = 4 : 1) c) isolated yield by flash chromatography (hexane : e) $mp(^{\circ}C)$ of base f) $bp(^{\circ}C)$ of base b) oil a) isomeric mixture

The reaction of <u>1</u> with p-methoxybromobenzene gave <u>4</u> (72% yield) which was converted into <u>5</u> in 68% yield upon treatment with methyl iodide followed by the catalytic hydrogenation with PtO₂ in MeOH.

Transformation of 4-(1-propenyl)isoquinoline (6) to the pyrrolo[3,2,1-de]phenanthridine ring system could be accomplished.⁹ Thus, treatment of 6 [derived from 1 and 1-bromo-1-propene in 72% yield (Table 2)] with 4-bromo-1-butene at 100°C followed by the oxidation with $K_3Fe(CN)_6$ under basic conditions produced dienamide (7) smoothly in 60% yield. Heating 7 in o-dichlorobenzene at 250°C under nitrogen produced 8 in 30% yield.

The present procedure provides general alternative to the known methods for the synthesis of 4-substituted isoquinoline derivatives.

EXPERIMENTAL

All melting points were determined with a Yanagimoto micro-melting-point apparatus and are uncorrected. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl before use. Infrared spectra were recorded with a Hitachi 270-30 spectrometer. Nuclear magnetic resonance spectra were determined with a Hitachi R-40 and a JEOL FX-90Q spectrometers. Chemical shifts are reported relative to internal tetramethylsilane and given in δ -value. Coupling constants are reported in Hertz and splitting patterns are designated as follows; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. Mass spectra were recorded on a JEOL JMS-D300 and a JEOL JMS-QH100 spectrometers. Flash chromatography was performed on silica gel 230-400 mesh ASTM obtained from Merck.

<u>Typical Procedure for the Preparation of 4-Substituted Isoquinoline Derivatives:</u> <u>4-Phenylisoquinoline</u> — A mixture of <u>1</u> (394 mg, 2 mmol), bromobenzene (468 mg, 3 mmol), powdered KOH (336 mg, 6 mmol), Bu_4NBr (322 mg, 1 mmol), and $Pd(Ph_3P)_4$ (230 mg, 0.2 mmol) in THF (10 ml) under nitrogen was refluxed for 6 h. The mixture was diluted with AcOEt (60 ml), washed with brine (40 ml), and dried over MgSO₄. After removal of the solvent, the residue was purified by flash chromatography with hexane-AcOEt (4:1) as an eluent to give 287 mg (70% yield) of 4-phenylisoquinoline. (Table 1)

<u>4-(4-Methoxyphenyl)isoquinoline (4)</u> — Compound <u>4</u> was prepared in 72% yield by the reaction <u>1</u> (394 mg, 2 mmol) and p-methoxybromobenzene (558 mg, 3 mmol) in the presence of Pd(Ph₃P)₄ (230 mg, 0.2 mmol), powdered KOH (336 mg, 6 mmol) and Bu₄NBr (322 mg, 1 mmol) in THF (10 ml) under a nitrogen atmosphere in the same manner as described for 4-phenylisoquinoline. Mp 100-101°C (recrystallized from acetone-hexane), mp(picrate) 238-240°C (recrystallized from EtOH) [1it.¹⁰ mp (picrate) 244°C]. ¹H-NMR(CDCl₃) δ : 3.83(s, 3H), 6.98(d, 2H, J=8 Hz), 7.20-7.70 (m, 4H), 7.75-8.10(m, 2H), 8.41(s, 1H), 9.15(s, 1H). Anal. Calcd for C₂₂H₁₆N₄O₈: C, 56.98; H, 3.47; N, 12.06. Found : C, 56.77; H, 3.40; N, 12.04.

 $\frac{4-(4-\text{Methoxyphenyl})-2-\text{methyl}-1,2,3,4-\text{tetrahydroisoquinoline (5)} \qquad \text{A mixture}}{4 (200 mg) and methyl iodide (2 ml) in MeOH (5 ml) was refluxed for 4 h, and then concentrated under reduced pressure. The residue was subjected to the catalytic hydrogenation with PtO₂ (10 mg) in MeOH (10 ml) and triethylamine (1 ml) under atmospheric pressure. After hydrogen up-take was ceased, the solvent and catalyst were removed, and the residue was purified by flash chromatography with hexane-AcOEt (2:1) as an eluent to give 146 mg (68% yield) of <u>5</u>. Mp 121-122°C (recrystallized from acetone-ether). IR(CHCl₃) : 1612, 1512, 1464 cm⁻¹. ¹H-NMR(CDCl₃) & : 2.37(s, 3H), 2.40-2.80(m, 1H), 2.85-3.15(m, 1H), 3.60-3.70(m, 2H), 3.71(s, 3H), 4.10-4.35(m, 1H), 6.70-7.20(m, 8H). Anal. Calcd for C₁₇H₁₉NO :$

-1608 -

C, 80.60; H, 7.56; N, 5.53. Found : C, 80.42; H, 7.52; N, 5.47.

<u>2-(3-Butenyl)-4-(1-propenyl)-1-isoquinolone (7)</u> — A mixture of trans-4-(1propenyl)isoquinoline (6) (220 mg, 1.3 mmol) and 4-bromo-1-butene (255 mg, 1.9 mmol) was heated at 100°C for 4 h. After cooling, the mixture was dissolved in 20% NaOH solution (10 ml), and $K_3Fe(CN)_6$ (855 mg, 2.6 mmol) was added in portions. The mixture was stirred for 2 h, then extracted with AcOEt (50 ml), and the extract was dried over MgSO₄. After removal of the solvent, the residue was purified by flash chromatography with AcOEt-hexane (1:4) as an eluent to give 186 mg (60% yield) of <u>7</u> as a viscous oil. IR(neat) : 1650, 1622, 1544 cm⁻¹. Highresolution MS (m/z) : Calcd for C₁₆H₁₇NO 239.13092. Found 239.13063. Product <u>7</u> thus obtained was regarded as a mixture of possible isomers (from ¹H-NMR) and used directly for Diels-Alder reaction without further purification.

 $\frac{4,5-\text{Dihydro-2-methyl-7H-pyrrolo[3,2,1-de]phenanthridin-7-one (8)}{2} \longrightarrow A \text{ solution}$ of 7 (100 mg) in o-dichlorobenzene (5 ml) was heated at 250°C for 5 days under a nitrogen atmosphere. After the mixture was concentrated under reduced pressure, the residue was purified by flash chromatography with hexane-AcOEt (1:1) as an eluent to give 30 mg (30% yield) of <u>8</u>. Mp 215-217°C (recrystallized from acetone-hexane). IR(CHCl₃) : 1644, 1628, 1602, 1502, 1486 cm⁻¹. ¹H-NMR(CDCl₃) δ : 2.48(s, 3H), 3.38(t, 2H, J=8 Hz), 4.49(t, 2H, J=8 Hz), 7.40-7.90(m, 4H), 8.19 (dd, 1H, J=1, 8 Hz), 8.55(dd, 1H, J=1, 8 Hz). Anal. Calcd for C₁₆H₁₃NO : C, 81.68; H, 5.57; N, 5.95. Found : C, 81.60; H, 5.51; N, 6.05.

ACKNOWLEDGEMENT

This work was supported in part by a Grant-in-Aid for Scientific Research (No. 59570902) from the Ministry of Education, Science and Culture of Japan, which is gratefully acknowledged.

REFERENCES

- 1. T. Kametani, "The Total Synthesis of Natural Products", Vol. 3, ed. by J. ApSimon, John Wiley & Sons, Inc., New york, 1977, p 1; S. P. Dyke, "Rodd's Chemistry of Carbon Compounds", Vol. IV, Part H, ed. by S. Coffey, Elsevier Scientific Publishing Company, Amsterdam, 1978, p 2.
- M. Ishikura, M. Kamada and M. Terashima, <u>Heterocycles</u>, 1984, 22, 265; idem, <u>Synthesis</u>, 1984, 936; M. Ishikura, M. Kamada, T. Ohta and M. Terashima, <u>Heterocycles</u>, 1984, 22, 2475.

- M. Ishikura, T. Mano, I. Oda and M. Terashima, <u>Heterocycles</u>, 1984, 22, 2471.
- T. Nomoto, N. Nasui and H. Takayama, <u>Chem. Commun.</u>, 1984, 1646 and references cited therein.
- 5. W. Krabbe, H. H. Böhlk and K. H. Schmidt, <u>Ber</u>., 1938, 71, 74.
- 6. K. Ueda, <u>Yakugaku Zasshi</u>, 1940, <u>60</u>, 536.
- 7. K. Edo, T. Sakamoto and H. Yamanaka, Chem. Pharm. Bull., 1979, 27, 193.
- H. Yamanaka, M. Shiraiwa, K. Edo and T. Sakamoto, <u>Chem. Pharm. Bull.</u>, 1979, 27, 270.
- For Diels-Alder approach to this ring system see : G. Stork and D. J. Morgans, Jr., <u>J. Am. Chem. Soc.</u>, 1979, <u>101</u>, 7110; D. J. Morgans, Jr. and G. Stork, <u>Tetrahedron Lett.</u>, 1979, 1959; G. Hwang and P. Magnus, <u>Chem. Commun.</u>, 1983, 693.
- V. N. Deshpande and K. S. Nargund, <u>J. Karnatak Univ.</u>, 1956, <u>1</u>, 15 [Chem. Abstr., 1958, <u>52</u>, 7320a].

Received, 2nd February, 1987