A PROMISING CYCLIZATION OF THE 3-ARYLIDENE-6-ARYLMETHYL-2,5-PIPERAZINEDIONE TO CONSTRUCT TRICYCLIC LACTAM AS AN INTERMEDIATE TO SAFRAMYCIN SYNTHESIS

Akinori Kubo,^{*} Naoki Saito, and Madoka Nakamura Meiji College of Pharmacy, 1-35-23 Nozawa, Setagaya-ku, Tokyo 154, Japan Koreharu Ogata and Shin-ichiro Sakai Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi, Chiba 260, Japan

<u>Abstract</u> — Regioselective reduction of the 3-arylidene-6-arylmethyl-2,5-piperazinedione (7b) at the C-2 position, followed by effective intramolecular cyclization to afford the tricyclic lactam (10b) is described. The structure of 16 as an intermediate to saframycin synthesis is confirmed by an X-ray crystallographic analysis.

Recent years several naturally occurring isoquinolinequinones¹ have been isolated from Actinomycetes and marine sponge. Saframycins^{1,2} are antitumor antibiotics produced by Streptomyces lavendulae. They constitute a class of the dimeric isoquinolinequinone antibiotic group, which includes safracins³ and renieramycins.⁴ A few synthetic studies⁵ toward them have been appeared because of their unique structral features and because of their biological interests. An elegant total synthesis of saframycin B (2) has been reported by Fukuyama and Sachleben.⁶ In this paper, we report an efficient synthesis of a key tricyclic lactam (<u>16</u>) as an intermediate toward a total synthesis of <u>1</u> and <u>2</u>. Benzylation of 4⁷ (BnBr, NaH, DMF, room temperature, 1 h) furnished 5, and succes-

sive treatment with hydrazine hydrate (DMF, room temperature, 1 h) furnished 5, and successive treatment with hydrazine hydrate (DMF, room temperature, 24 h) to afford <u>6</u> (mp 170-172°C] in 94% overall yield. The amide <u>6</u> was converted into the imide $\underline{7a-e}^8$ in 89-94% yield according to the procedure of Grieco .⁹

The regioselective reduction of $\underline{7}$ at the C-2 position to the corresponding allylic

alcohol 8, that was a crucial step for the total synthesis of saframycins, was achieved as followed. After several attempts,¹⁰ we found that lithium tri-tertbutoxyaluminohydride was most effective for the 1,2-reduction of the imide 7. Thus, <u>7a-e</u> were reduced with an excess lithium tri-tert-butoxyaluminohydride (THF, 0°C, 1 h) to afford a diastereomeric mixture of the unstable alcohols <u>8a-e</u> along with 6. It was our hope that the bulky carbamate <u>7b</u> (or <u>7e</u>) would exert a steric influence on the course of the reduction/hydrolysis reactions, thus forcing the reduction of the amide carbonyl (path A in <u>9</u>) to occur regioselectively. (Table I) Whereas cyclization of <u>8a-d</u> was effected by treatment with formic acid (60°C, 1 h)

-1766 -

to afford the desired 1,5-imino-3-benzazocine derivatives <u>l0a-d</u> (Table II) in 58-64% yield, cyclization of <u>8e</u> [mp 155-159°C] under the same conditions gave the pyrazinone $\underline{11}^{11}$ in 53% yield.

Starting Material		Yield ^a (%)		Yield ^b (%)	
	mp (°C)	8	<u>6</u>	<u>10</u>	mp (°C)
<u>7a</u>	153.5-155	21	40	64 (16)	156.5-158
<u>7b</u>	137 -138.5	69	7	60 (52)	176.5-178
<u>7c</u>	127.5-129	45	36	60 (31)	146.5-148
<u>7d</u>	127,5-128	29	57	58 (17)	amorphous powder
<u>7e</u>	123 -124.5	69	7		

Table I.

a, Yields are based on the chromatographycally pure material.

b, Yields in parentheses were obtained by reduction and cyclization sequence of $\frac{7}{2}$ (without isolation of 8 and 6).

Consequently, the reduction of $\underline{7b}$ gave $\underline{8b}$ and $\underline{6}$, this mixture was treated with formic acid gave $\underline{10b}$ in 52% yield. The stereochemical assignments for structures of $\underline{10a-d}$ were based on the structural studies on the tricyclic lactam $\underline{16}$ (*vide infra*). It was apparent that this cyclization was accompanied by isomerization of the double bond in $\underline{12}$ (Z-form) due to the steric compression between the two aromatic rings.

	l _{H-nmr} (CDCl ₃) δ ppm				¹³ C-nmr (CDCl ₃) δ ppm				
Compounds	H-1	H-5	C=CH	Ar-H	C-1	C-2	C-5	C-6	с= <u>с</u> н
<u>10a</u>	6.77	5.23	6.10	7.56	45.8	121.6	53.6	28.3	107.6
<u>10b</u>	6.77	5.20	6.06	7.48	45.8	121.7	53.5	28.2	107.6
<u>10c</u>	6.78	5 .26	6.10	7.54	46.0	121.7	53,6	28.3	107.7
<u>10d</u>	6.79	5.28	6.10	7.52	46.1	121,6	53.6	28,4	107.8
<u>15</u>	5.53	4.28	5.93	6.71					
<u>16</u>	5.41	3.86	6.18	6.89	52.6	122.0	60.6	28,3	109.1

Table II. ¹H-nmr and ¹³C-nmr spectra of the tricyclic lactams

Next we turned our attention to the selective deprotection from the amine nitrogen at the N-11 position in <u>10b</u>.¹² This was effective by acid-catalyzed conditions (conc. H_2SO_4 , CF_3CO_2H , room temperature, 24 h)¹³ to give the secondary amine <u>15</u> in quantitative yield. Reductive methylation of <u>15</u> (37% HCHO-H₂O, HCO₂H, 70°C, 1 h) gave the desired tricyclic lactam <u>16</u> [mp 162-163.5°C] in 96% yield. The structure of <u>16</u> was confirmed by an X-ray crystallographic analysis.¹⁴ By comparison of ¹Hnmr and ¹³C-nmr spectra of <u>10a-d</u>, <u>15</u>, and <u>16</u>, (Table II) stereochemistries of these tricyclic lactam derivatives were concluded to be identical with each other.

ORTEP STRUCTURE OF THE COMPOUND 16

Transformation of <u>16</u> to the basic ring system of saframycins is currentry under way in our laboratories.

ACKNOWLEDGMENT

Financial support from the Ministry of Education, Science and Culture, Japan, in the form of a Grant-in-Aid for Scientific Research, is greatly appreciated.

REFERENCES AND NOTES

- T. Arai and A. Kubo, "The Alkaloids," Vol. 21, ed. by A. Brossi, Academic Press, Inc., New York, 1983, pp 55-100 and references cited therein.
- 2) J. W. Lown, C. C. Hanstock, A. V. Joshua, T. Arai, and K. Takahashi, <u>J. Anti-biot.</u>, 1983, <u>36</u>, 1184; T. Arai, K. Yazawa, K. Takahashi, A. Maeda, and Y. Mikami, <u>Antimicrob. Agents Chemother.</u>, 1985, <u>28</u>, 5; Y. Mikami, K. Takahashi, K. Yazawa, T. Arai, M. Namikoshi, S. Iwasaki, and S. Okuda, <u>J. Biol. Chem.</u>, 1985, <u>260</u>, 344; K. Yazawa, K. Takahashi, Y. Mikami, T. Arai, N. Saito, and A. Kubo, <u>J. Antibiot.</u>, 1986, <u>39</u>, 1639; A. Kubo, N. Saito, Y. Kitahara, K. Takahashi, K. Yazawa, and T. Arai, <u>Chem. Pharm. Bull.</u>, 1987, <u>35</u>, 440.
- 3) Y. Ikeda, H. Matsuki, T. Ogawa, and T. Munakata, J. Antibiot., 1983, <u>36</u>, 1284;
 R. Cooper and S. Unger, <u>ibid.</u>, 1985, <u>38</u>, 24.
- 4) J. M. Frincke and D. J. Faulkner, <u>J. Am. Chem. Soc.</u>, 1982, <u>104</u>, 265.
- 5) <u>Saframycins</u>: H. Kurihara and H. Mishima, <u>Heterocycles</u>, 1982, <u>17</u>, 191; Idem., <u>Tetrahedron Lett.</u>, 1982, <u>23</u>, 3639; H. Kurihara, H. Mishima, and M. Arai, <u>Hetero-</u>

cycles, 1986, <u>24</u>, 1549; cf, <u>Naphthyridinomycins</u>: S. Danishefsky, B. T. O'Neill, and J. P. Springer, <u>Tetrahedron Lett.</u>, 1984, <u>25</u>, 4203; D. A. Evans, C. R. Illig, and J. C. Saddler, <u>J. Am. Chem. Soc.</u>, 1986, <u>108</u>, 2478; T. Fukuyama, L. Li, A. A. Laid, and R. K. Frank, <u>ibid.</u>, 1987, <u>109</u>, 1587.

- 6) T. Fukuyama and R. A. Sachleben, <u>J. Am. Chem. Soc.</u>, 1982, <u>104</u>, 4957.
- 7) The 2,5-piperazinedione <u>4</u> was synthesized from the commercially available glycine anhydride without using any chromatographic separation in 35% overall yield; A. Kubo, N. Saito, H. Yamato, and Y. Kawakami, <u>Chem. Pharm. Bull.</u>, 1987, 35, 0000.
- Satisfactory spectroscopic data were obtained for all the new compounds in this paper.
- 9) D. L. Flynn, R. E. Zelle, P. A. Grieco, J. Org. Chem., 1983, 48, 2424.
- 10) Reduction of $\underline{7b}$ with NaBH₃CN or CeCl₃-NaBH₄ gave <u>6</u> in quantitative yield. In addition, reduction of $\underline{7b}$ with DIBAH or 9-BBN was failed, only starting material was recovered.
- 12) Debenzylation of <u>10b</u> (PtO₂, H₂, EtOH, 25°C, 24 h) gave the cyclohexylmethyl derivative <u>17</u> [mp 177.5-179°C; 87%]. All the other removal conditions were unsuccessful.
- 13) M. I. Jones, C. Froussions, and D. A. Evans, <u>J. Chem. Soc., Chem. Commun.</u>, 1976, 472.

14) The crystal of <u>16</u> belonged to the triclinic space group $P\overline{1}$ with a = 12.911 (3) Å, b = 12.396 (3) Å, c = 10.506 (3) Å, corresponding to a calculated crystal density of 1.26 g/cm³. The structure was solved by the MULTAN 80 and refined by block-diagonal-matrix least squares method to an R factor of 0.015.

Received, 20th March, 1987