FOUR NEW ACRIDONE ALKALOIDS FROM <u>SARCOMELICOPE DOGNIENSIS</u> HARTLEY (RUTACEAE) Sofia Mitaku, Alexios-Leandros Skaltsounis, François Tillequin, and Michel Koch Département de Pharmacognosie de l'Université René Descartes, U.A au

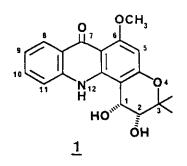
C.N.R.S. n°484, Faculté des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, F.75006 Parıs, France

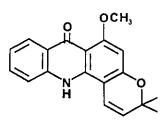
Jacques Pusset and Gérard Chauvière

Laboratoire des Plantes Médicinales du C.N.R.S., Montravel, Nouméa, New Caledonia

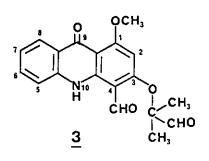
<u>Abstract</u> - Four new acridone alkaloids, <u>1</u>, <u>3</u>, <u>4</u> and <u>6</u> have been isolated from the leaves of <u>Sarcomelicope dogniensis</u>. Their structures have been elucidated by spectroscopic studies and confirmed by their synthesis, using N-desmethylacronycine (<u>2</u>) as starting material.

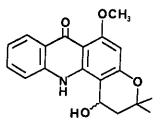
<u>Sarcomelicope dogniensis</u> Hartley (Rutaceae) is a medium tree upto 12 m high recently described as endemic to the Plateau de Dogny, New Caledonia¹. In a continuation of our systematic studies of alkaloid containing plants from New Caledonia², we wish to report here the structural elucidation of four novel acridones isolated from the leaves of this species³.

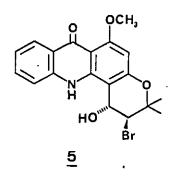

(-)-Cis-1,2-dihydroxy-1,2-dihydro-N-desmethylacronycine (<u>1</u>)⁴ has been obtained as a yellow amorphous compound (contents : 0.01 % from the dried plant material) ; $\left[\alpha\right]_{D}^{20} = -2^{\circ}$ (c = 0.25, MeOH). Its empirical formula has been determined by high resolution mass spectroscopy as $C_{19}H_{19}NO_5$ (Found : 341.1260 ; Calcd. : 341.1263). Its uv spectrum, λ_{max}^{MeOH} nm (log ε) : 228(4.16), 246(sh., 4.31), 260(4.41), 269(4.41), 290(4.07), 320 (sh., 3.65) and 374(3.78) is very close to that of 1,2-dihydroacronycine⁵. The ir spectrum exhibits typical absorptions at v_{max} .cm⁻¹ (KBr) : 775, 1165, 1605, 1625, 1650, 2960, 3005 and 3445, the last of which indicates the presence of free alcoholic groups. The main features of the ¹H nmr spectrum (Table I) are the signal of the NH-10 of a 9-acridone and the series of signals typical to a fused <u>cis</u>-3,4-dihydroxy-2,2-dimethyl-3,4-dihydro-2H-pyran system^{6,7}. These elements permitted depicting the structure of this novel alkaloid as <u>1</u>. Unfortunately, the absolute configurations of the two chiral centers at C-1 and C-2 remain unknown, due to the small amount of natural product isolated. Confirmation of structure <u>1</u> could be obtained by partial synthesis. Oxidation^{7,8} of N-desmethyl-acronycine (<u>2</u>) $(0sO_4/C_5H_5N/20^{\circ}C/3 h)$ leads in 95 % yield to (<u>+</u>)-<u>cis</u>-1,2-dihydroxy-1,2-dihydro-N-desmethylacronycine (<u>1</u>) whose chromatographic and spectral characteristics (tlc, uv, ir, ms, nmr) are identical with those of the natural product.

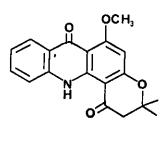

1-Methoxy-3-(2-methylpropanal-2-oxy)-acridin-9-one-4-carbaldehyde (3) has been obtained as a yellow amorphous solid (contents : 0.01 % from the dried plant material); $\left[\alpha\right]_{D}^{20} = 0^{\circ}$. Its empirical formula could be established by high resolution mass spectrometry as $C_{19}H_{17}NO_5$ (Found : 339.1095 ; Calcd.: 339.1106). The uv spectrum, $\lambda \frac{\text{MeOH}}{\text{max.}}$ (log ε) : 225(4.11), 246(4.47), 260(4.56), 275(sh., 4.38), 285 (sh., 4.37), 309(4.15), 325(sh., 3.89) and 393(4.04) is close to that of acronycine⁵ and shows typical absorptions associated with a 9-acridone nucleus bearing two oxygen substitutents at C-1 and C-3 and an unsaturated substitutent at C-4. The ir spectrum, v_{max} cm⁻¹ (KBr) : 780, 1160, 1610, 1625, 1640, 1655, 1745, 2950, 3000 and 3430 is consistent with a 9-acridone 9,10 skeleton and with the presence of aliphatic and aromatic aldehyde groups. In good agreement with this statement, the ¹H nmr spectrum (Table I) exhibits one D₂O-exchangeable NH-singlet at 12.95ppm and two 1H-aldehyde singlets at 10.48 and 9.88 ppm. The aromatic signals are typical to a 1,3,4-trisubstituted 9-acridone. One 3H-singlet at 3.98 ppm and one 6Hsinglet at 1.68 ppm were assigned to one OMe and one CMe₂ groups. These data suggested a structure of 1-methoxy-3-(2-methylpropanal-2-oxy)-acridin-9-one-4carbaldehyde (3) for this novel alkaloid. Confirmation of the location of the substitutents on the acridone nucleus was performed by chemical correlation. Periodic oxidation of the diol $\frac{1}{2}$ (NaIO₄/MeOH/20°C/2 h) leads in 68 % yield to the dialdehyde 3 identical with the natural product.

(+)-1-Hydroxy-1,2-dihydro-N-desmethylacronycine (<u>4</u>) has been obtained as light yellow prisms from methanol, mp 212-214°C (contents : 0.01 % from the dried plant material) ; $[\alpha]_D^{20} = +4^\circ$ (c = 0.25, MeOH). The empirical formula could be established by high resolution mass spectrometry as $C_{19}H_{19}NO_4$ (Found : 325.1301 ;


Calcd. : 325.1313). The uv spectrum, $\lambda_{max.}^{MeOH}$ nm (log ϵ) : 227(4.11), 247(sh., 4.35), 260(4.48), 269(4.49), 291(4.07), 315(sh, 3.68), 321(sh, 3.62) and 374(3.72) is very similar with that of 1,2-dihydroacronycine. The ir spectrum, V max. cm⁻¹ (KBr) : 765, 1165, 1605, 1625, 1650, 2960, 3010 and 3450 shows the characteristic absorptions of a 9-acridone system^{9,10} and of a free OH-group. The ¹H nmr spectrum (Table I) exhibits in addition to the signals of a 1,3,4-trisubstituted 9-acridone, the signals associated with a fused 4-hydroxy-2,2-dimethy1-3,4-dihydro-2H-pyran system⁶. These elements permitted depicting the structure of this new alkaloid as 4. Nevertheless, the absolute stereochemistry at C-1 remains unknown, due to the small amount of natural product at our disposal. The structure of this alkaloid was finally confirmed by its synthesis from N-desmethylacronycine (2). In a first step, hydroxybromination^{8,11} of 2 (N-bromosuccinimide/50 % aqueous THF/0°C/3 h) led in 47 % yield to (+)-trans-hydroxy-1-bromo-2-dihydro-1,2-N-desmethylacronycine (5). This bromohydrin could then be smoothly debrominated using tributyltinhydridereduction^{11,12} (Bu₂SnH/2,2'-Azabis(2-methylpropionitrile)/Toluene/Reflux under Ar/1 h). This latter reaction leads in 80 % yield to (+)-1-hydroxy-1,2-dihydro-Ndesmethylacronycine (4) whose chromatographic and spectral characteristics (tlc, uv. ir. ms. nmr) are identical with those of the natural product.


1-Oxo-1,2-dihydro-N-desmethylacronycine (6) has been isolated as a yellow amorphous solid (contents : 0.02 % of the dried plant material); $\left[\alpha\right]_{D}^{20} = 0^{\circ}$. Its empirical formula has been determined by high resolution mass spectrometry as $C_{19}H_{17}NO_4$ (Found : 323.1154 ; Calcd. : 323.1157). The uv spectrum, λ_{max}^{MeOH} nm (log E) : 227(3.71), 245(3.92), 260(4.01), 275(sh., 3.93), 280(3.94), 310(3.59), 326(sh., 3.25) and 384(3.57) and the ir spectrum, v max. cm⁻¹ (KBr) : 780, 1160. 1615, 1630, 1645, 1655, 2940, 3000 and 3415 showed diagnostic absorptions of a 9-acridone nucleus⁹. The ¹H nmr spectrum (Table I) exhibits in the aromatic region the signals associated with a 1,3,4-trisubstituted 9-acridone skeleton. In the aliphatic region, one 3H-singlet at 4.06 ppm, one 2H-singlet at 2.83 ppm and one 6H-singlet at 1.56 ppm could be assigned to one OMe and to the protons of a Ar-CO- \underline{CH}_2 -C(\underline{CH}_3)₂-O-Ar system. These elements permitted depicting the structure of this novel acridone as 6. Confirmation of this structure was obtained by its synthesis from the benzylic alcohol 4. Chromic oxidation^{13,14} of (+)-1-hydroxy-1,2-dihydro-N-desmethylacronycine (4) (Pyridinium chlorochromate/anh. CH2Cl2/20°C/ 3 h) leads in 68 % yield to 1-oxo-1,2-dihydro-N-desmethylacronycine (6) identical





.

•

. .

<u>6</u>

Н	<u>, 1</u> ^a	<u>4</u> ^a .	<u>é</u> b	Н	<u>3</u> b
H-1A	5.02	5.08		СНО-4	
	d: 5	q:6, tr. to t:6 by D ₂ 0			10.48 s
ОН -1 В	5.33	5.97	-		
	br.s.D ₂ 0 exch.	d:6, D ₂ 0 exch.			
H-2A	3.68	2.14	2.83		
	d:5	dd:14,6	s (2H)	-ОСМе ₂ <u>СН</u> О	9.88 s
H - 2B	-	2.04			
		dd:14,6			
OH-2B	3.40	-	-		
	br.s.D ₂ O exch.				
Me-3A	1.32	1.43			
	5	S	1.56	-0C <u>Me</u> 2CHO	1.68
Me-3B	1.38	1.34	s(6H)	2	s(6H)
	S	S			
H - 5	6.11	6.11	6.16	H - 2	5.89
	5	s	s		S
OMe+6	3.78	3.77	4.06	OMe-1	3.98
	S	S	s		s
H 8	8.09	8.07	8.43	H- 8	8.41
	dd:8,1.5	dd:8,1.5	dd:8,1.5		dd:8,1.5
H-9	7.17	7.17	7.30	H– 7	7.33
	td:8,1.5	td:8,1.5	td:8,1.5		td:8,1.5
H - 10	7.62	7.61	7.64	H-6	7.66
	td:8,1.5	td:8,1.5	td:8,1.5		td:8,1.5
H -11	7.61	7.81	7.37	H - 5	7.40
	dd:8,1.5	dd:8,1.5	dd:8,1.5		dd:8,1.5
NH-12	10.26	10.35	12.90	NH-10	12,95
		br.s.D ₂ 0 exch.	br.s.D ₂ 0 excl		br.s.D ₂ 0 exch.

Table I : ¹H nmr spectra of acridones <u>1</u>, <u>3</u>, <u>4</u> and <u>6</u>

a : in CD₃SOCD₃

,

.

with the natural product.

All the novel acridone alkaloids isolated from the leaves of <u>Sarcomelicope</u> <u>dogniensis</u> result from an oxidation of the dimethylpyran ring of N-desmethylacronycine¹⁵⁻¹⁷. This latter compound and acronycine itself are the major alkaloids of the plant. From a chemotaxonomic point of view, these results are in full agreement with the recent botanical revision of Hartley¹, since all the <u>Sarcomelicope</u> species so far studied are characterized by the presence of acronycine and acronycine-derived alkaloids.

REFERENCES AND NOTES

1. H. Hartley, Aust. J. Bot., 1982, 30, 359.

- Part CXIII in the series "Plantes de Nouvelle-Calédonie". Part CXII, see "The volatile oil of <u>Acacia spirorbis</u> (Mimosaceae)", J.J. Brophy, E.V. Lassak and T. Sévenet, Phytochemistry, submitted for publication.
- 3. The plant material has been collected on the Plateau de Dogny (New Caledonia) in November 1983. Herbarium samples (Pusset-Chauvière 705) are held in the herbaria of the Centre ORSTOM de Nouméa.
- 4. The semi-trivial nomenclature used in this paper is that generally used for acronycine derivatives, i.e., 6-hydroxy-3,12-dihydro-3,3,12-trimethyl-7Hpyrano[2,3-c]acridin-7-one is known as noracronycine, whereas 3,12-dihydro-3,3-dimethyl-6-methoxy-7H-pyrano[2,3-c]acridin-7-one is known as N-desmethylacronycine.
- 5. R.D. Brown and F.N. Lahey, Aust. J. Sci. Res., 1950, A3, 593.
- 6. S. Mitaku, A.-L. Skaltsounis, F. Tillequin, M. Koch, J. Pusset, and
 G. Chauvière, J. Nat. Prod., 1985, 48, 772.
- 7. S. Mitaku, A.-L. Skaltsounis, F. Tillequin, M. Koch, J. Pusset, and
 G. Chauvière, <u>J. Nat. Prod.</u>, 1986, 49, in press.
- 8. R.C. Jennings and A.P. Ottridge, J. Chem. Soc. Perkin Trans I., 1984, 1733.
- 9. J. Reisch, K. Szendrei, E. Minker, and I. Novàk, Pharmazie, 1972, 27, 208.
- 10. G.H. Svoboda, Lloydia, 1966, 29, 206.
- S. Mitaku, A.-L. Skaltsounis, F. Tillequin, and M. Koch, <u>Planta medica</u>, 1987, 53, in press.
- 12. J.P. Kutney, T. Honda, A.V. Joshua, N.G. Lewis, and B.R. Worth, <u>Helv. Chim.</u> <u>Acta</u>, 1978, 61, 690.

13. E.J. Corey and D.L. Boger, Tetrahedron Lett., 1978, 2461.

. . . .

- 14. A.-L. Skaltsounis, S. Michel, F. Tillequin, and M. Koch, <u>Tetrahedron Lett.</u>, 1984, 25, 2783.
- 15. T.R. Govindachari, B.R. Pai, and P.S. Subramaniam, Tetrahedron, 1966, 22, 3245.
- 16. J.H. Adams, P.M. Brown, P. Gupta, M.S. Khan, and J.R. Lewis, <u>Tetrahedron</u>, 1981, <u>37</u>, 209.
- 17. S. Funayama and G.A. Cordell, Planta medica, 1984, 50, 121.

Received, 1st April, 1987