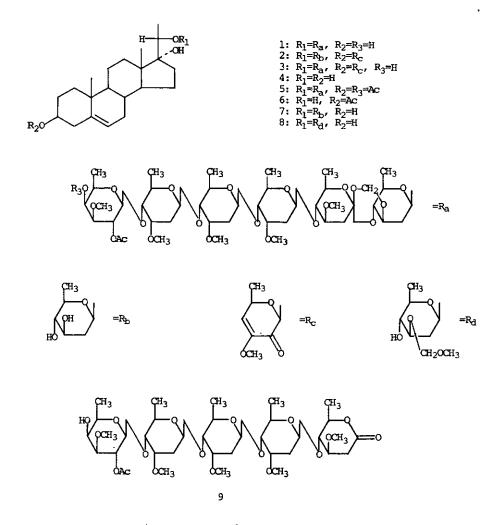
PERIPLOSIDES A, B AND C, STEROIDAL GLYCOSIDES OF PERIPLOCA SEPIUM ROOT-BARKS

Yoshiteru Oshima, Toshiyuki Hirota, and Hiroshi Hikino* Pharmaceutical Institute, Tohoku University, Aoba-yama, Sendai 980, Japan


<u>Abstract</u> — Three new steroidal glycosides, periplosides A, B and C, among which periploside A exhibited anticomplementary activity, have been isolated from <u>Periploca sepium</u> root-barks. The structures of periplosides A, B and C have been elucidated as shown in formulas 1, 2 and 3, respectively, on the basis of chemical and spectroscopic evidence.

The crude drug "Hoku-gokahi", prepared from the root barks of <u>Periploca sepium</u> Bunge (Asclepiadaceae), has been employed as a tonic in the Oriental system of medicines. Literature survey so far reported mainly the isolation and structure elucidation of steroidal glycosides and oligosaccharides from the root-barks of this plant.² During the course of the screening for active principles of the Oriental medicinal plants which have anticomplementary activity, we have found that the methanolic extract of <u>Periploca sepium</u> exhibited significant anticomplementary activity. Activity-guided fractionation of the methanolic extract afforded an active fraction which on further purification yielded three novel steroidal glycosides, now termed as periplosides A, B and C. In this paper, we wish to report the structure determination of these periplosides by means of chemical reactions and spectroscopic data.

Periploside A, colorless prisms, mp 225-226°C, $[\alpha]_D$ +15.7° (<u>c</u> 0.27, MeOH), was shown to have the molecular formula $C_{65}H_{106}O_{24}$ from the results of its FD mass (<u>m/z</u> 1294 (M⁺+Na+H) and 1271 (M⁺+H)) and its ¹³C nmr spectroscopy (Tables 1 and 2).³ Since periploside A was suggested to be a steroidal glycoside bearing 2-deoxysugars by positive Liebermann-Burchard and Keller-Kiliani reactions, it was subjected to acid hydrolysis with 0.05N sulfuric acid in aqueous dioxane to liberate an aglycone, which was identified as Δ^5 -pregnene-3 β ,17 α ,20 α -triol (4),⁴ along with <u>D</u>-canarose, <u>D</u>-cymarose and 4-<u>O</u>-(2-<u>O</u>-acety1- β -<u>D</u>-digitalopyranosy1)-<u>D</u>-cymaropyranose.⁵

In order to clarify the location of the sugar molety, periploside A was acetylated with acetic anhydride in pyridine to yield a diacetate (5) (13 C nmr: δ 20.8 and 21.4 (each q) and 170.3 and 170.7 (each s); 1 H nmr: δ 2.00 and 2.11 (3H each s)) which was, in turn, hydrolyzed with 0.5N sulfuric acid in aqueous dioxane to afford a monoacetylated derivative (6) as well as canarose, cymarose and 2,4-di-<u>O</u>-acetyldigitalose. Compound 6 differed from 4 in that the 1 H nmr signal at δ 4.55 (1H m) assigned to the C-3 hydrogen in the former was shifted downfield as compared to the corresponding one at δ 3.54 (1H m) in the latter, indicating 6 to be a 3-<u>O</u>-acetyl derivative of 4. Thus, it became obvious that the sugar residue composed of canarose, cymarose and 2,4-di-<u>O</u>-acetyldigitalose was linked to C-17 and/or C-20 hydroxyl group of periploside A.

For the settlement of the structure of the sugar moiety and its attachment, periploside A was hydrolyzed with 0.05N sulfuric acid in methanol to give glycoside E $(7)^6$ as well as two other products (8 and 9). In the ¹³C nmr spectrum of 7 (Py-<u>d</u>₅), it still showed signal at δ 85.4 (s) assigned to C-17, the resonance position of which was the same as that of periploside A (δ 85.4 (s)), leaving only C-20 as a sugar binding site in periploside A.

Compound 8 (FD-ms: m/z 509 (M⁺+H)) exhibited ¹H nmr signals due to the aglycone part (δ 0.66, 0.95 (3H each s, C₁₈ and C₁₉-methyls), 1.23 (3H d, <u>J</u> 6.0 Hz, C₂₁-methyl), 3.47 (1H m, C₃-H) and 3.68 (1H q, J 6.0 Hz, C_{20}^{-H}) and those due to canarose molety (§ 1.31 (3H d, J 6.0 Hz, C_6^{-H}), 3.05 (1H t, J 9.0 Hz, C₄~H), 3.22 (1H dq, J 9.0 and 6.0 Hz, C₅-H), 3.33 (1H m, C₃-H) and 4.52 (1H dd, J 10.0 and 2.5 Hz, C₁-H)). In addition to these, the ¹H nmr spectrum of 8 showed a methoxyl signal at δ 3.38 (3H s) and a geminally coupled AB quartet signal centered at δ 4.62 (J 7.2 Hz). The latter signal pointed to the presence of a methylene group flanked between two oxygen atoms, which was further substantiated by the resonance position (δ 97.1 (t)) and the large $^{1}J_{
m CH}$ coupling constant (J 162 Hz) 7 of the 13 C nmr signal. Moreover, only the 1 H nmr signal due to the C-3 hydrogen of the $c^{anarose}$ part of 8 was found shifted upfield as compared to that of 7, suggesting that a methoxymethyl group is attached to the C-3 hydroxyl group of the canarose molety of ${f 8.}$ This was supported by the long-range $^{13}\text{C}^{-1}\text{H}$ couplings between the methylene carbon signal at δ 97.1 and the methoxyl hydrogen signal at δ 3.38, and between the same carbon signal and the signal at δ 3.33 due to the C-3 carbinyl hydrogen of the canarose part.

Compound 9 (FD-ms: $\underline{m}/\underline{z}$ 833 (M⁺+K), 817 (M⁺+Na) and 794 (M⁺)) showing thirty-seven carbon signals in its ¹³C nmr spectrum was thought to be an oligosaccharide derived from the sugar moiety of

	1	2	3	5	7*	8
C-1	37.3	37.4	37.4	36.9	37.9	37.3
C-2	31.7	29.4	29.4	27.7	32.4	31.7
C-3	71.7	78.6	78.6	74.0	72.1	71.8
C-4	42.3	38,5	38.6	38.1	43.5	42.3
C-5	140.7	140.4	140.3	139.5	142.0	140.9
C-6	121.6	122,1	122.0	122.5	121.2	121.7
C-7	31,9	32.0	31.9	30.9	31.6	31.9
C-8	32.0	32.0	31.9	31.8	32.3	32.0
C-9	49.7	49.7	49.7	49.5	50.4	49.7
C-10	36.5	36.8	36.7	36.5	36.9	36.6
C-11	20.6	20.6	20.6	20.5	21.0	20.6
C-12	31.0	31.0	31.0	31.8	32.0	31.0
C-13	45.3	45.4	45.4	45.3	46.0	45.4
C-14	51.1	51.2	51.1	51.0	51.5	51.2
C-15	23.5	23.5	23.5	23.4	24.0	23.6
C-16	36.9	38.6	36.9	36.9	37.9	38.4
C-17	85.4	85.6	85,5	85.3	85.4	85.4
C-18	14.1	14.2	14.1	14.1	14.2	14,2
C-19	19.4	19.4	19.3	19.3	19.7	19.5
C-20	83.0	83.1	83.0	83.0	83.0	82.8
C-21	18.0	17.8	18.0	18.2	18.8	18,1
OAc				170.7		-
				21.4		

Table 1. Carbon-13 data of aglycone moieties of 1, 2, 3, 5, 7 and 8.

* measured in Py-ds.

periploside A judged from the number of carbinyl carbon signals. The ¹H nmr spectrum of **9** disclosed one set of signals at δ 1.38 (3H d, <u>J</u> 6.0 Hz), 2.67 (1H dd, <u>J</u> 15.0 and 3.3 Hz), 2.72 (1H dd, J 15.0 and 2.7 Hz), 3.54 (1H dd, J 7.8 and 7.0 Hz), 3.94 (1H m) and 4.10 (1H m), which, along with the presence of a carbonyl carbon signal at δ 169.3 (s) and the fact that oligosaccharides C₁, D₁, F_1 and F_2 were isolated from the same plant, indicated 9 to be an oleandronic acid- δ -lactone Further, a mass fragment ion peak at $\underline{m}/\underline{z}$ 635 (M⁺- δ -lactone) implied that this δ derivatıve. lactone moiety was present at one terminal. The detailed decoupling experiments performed in the 1 H nmr spectrum of 9 revealed the presence of another set of signals at δ 2.00 (3H s), 3.25 (1H dd, J 10.0 and 3.0 Hz), 4.32 (1H d, J 8.0 Hz) and 5.02 (1H dd, J 10.0 and 8.0 Hz), the chemical shifts and the coupling patterns of which demonstrated that a 2-Q-acetyldigitalose was present in 9. Besides the above functionalities, three moles of 2,6-dideoxysugars were easily identified by the presence of three pairs of secondary methyl, methoxyl and anomeric hydrogen signals in the $^{1}\mathrm{H}$ nmr spectrum of 9. These findings, together with the results of acid hydrolysis of periploside A and 5, indicated that 9 was a saccharide which was composed of oleandronic acid- δ -lactone and 2-<u>O</u>acetyldigitalose as terminal units having three moles of inner cymaroses. The modes of glycoside linkages of cymarose units and 2-Q-acetyldigitalose unit were established as β from the coupling constants (J 10.0 and 2.5 Hz) of the anomeric hydrogen signals of three cymaroses and that (J 8.0 Hz) of 2-0-acetyldigitalose in the 1 H nmr spectrum of 9.

In the 13 C nmr spectrum of periploside A, a characteristic low field signal appeared at δ 113.7 (s), while no corresponding signal was observed in the 13 C nmr spectra of the other partially acid hydrolyzed products (7, 8 and 9), indicating that an orthoester functionality was present in the C-20 side chain of periploside A. Further, the formation of the acetate (5) and the partially acid hydrolyzed products (7, 8 and 9) was reasonably accounted for from the cleavage of this orthoester group, which was likely to be formed between the lactone carbonyl of 9 and the canarose moiety of 8. On the basis of the above chemical and spectral evidence, periploside A was framed to have the structure 1.

	1	2	3	5	7*	8	9
can.							
C~1	100,8	100,9	100.8	100.7	102.5	100.8	
C-2	38.4	39.4	38.4	38.3	41.2	37.8	
C-3	77.1	71.8	77,1	77.0	73.0	81.6	
		77.6	79.2		78.6	75.3	
C-4	79.2			79.1			
C-5	70.0	71.7	70.0	69.9	71.3	71.7	
C-6	17.1	17.1	17.0	17.0	18.2	17.1	
OCH2O OMe	86.4		86.4	86.3		97.3 55.8	
ole.							
C-1	113.7		113,7	113.6			169.3
C-2	36.7		36.8	36.9			31.9
C-3							75.9
	78.3		78.3	78.3			
C-4	82.7		82.7	82.4			79.6
C-5	69.8		69.8	69.7			75.1
с-6	18.3		18.2	18.0			18.0
OMe	57.7		57.7	57.7			55.8
cym.							
C-1	98.5		98.5	98.4			98.8
C-2	36.0		36.0	35.5			35,1
C~3	77.7		77.7	77.6			77.1
C-4	82.5		82.6	82.4			81.3
C-5	68.9		68.9	68.8			67.9
C-6	18.3		18.2	18.2			17.2
OMe	58.0		58.0	58.0			57.3
cym.							
C-1	99.7		99.7	99,6			98.7
C-2	35.5		35.5	35.5			34.7
C-3	76.6		77.1	76.2		•	75.6
C-4	82.5		82.5	82.4			81.5
C-5							
	68.4		68.4	68.3			67.5
C-6	18.2		18.2	18.2			17.0
OMe	58.0		58.0	57.8			57.0
cym.							
C-1	99.8		99.7	99.6			98.6
C-2	35.3		35.3	35.2			34.4
C-3	77.1		77.1	77.0			76.2
C-4	83.7		83.6	83.8			82.6
C-5	68,1		68.1	68.3			67.1
C-6	18.2		18.2	18.0			17.0
OMe	58.6		58.6	58.1			57.6
dig.							
C-1	102.5		102.6	102.4			101.5
C~2	70.9		70.9	70.8			69.9
C-3	81.6		81.6	80.0			80.6
C-4	68.0		68.1	69.2			67.0
C-5	70.4		70.4	68.0	-		69.4
C-6	16.5		16.5	16.5			15.5
							•
OMe	57.4		57.4	57.6			56.4
OAc	169.4		169.5	169.3			168.4
	21.0		21.0	20.9			20.0
OAC				170.3			
hov				20.8			
hex.	•	07.7	07.0				
C-1		97.3	97.2				
C-2		186.0	185.9				
C-3		147.9	147.8				
C-4		118.6	118.5				
C-5		68.9	68.9				
c-6		23.0	23.0				

Table 2. Carbon-13 data of sugar moieties of 1, 2, 3, 5, 7, 8 and 9.

.

.

* measured in Py-<u>d</u>5.

.

•

-

Periploside B, colorless prisms, mp 146-147°C, [lpha]_ -71.6° (<u>c</u> 0.25, MeOH), was found to have the molecular formula $C_{34}H_{52}O_9$ from its FD-ms ($\underline{m}/\underline{z}$ 604 (M⁺)) and its ¹³C nmr spectrum (Tables 1 and 2). Periploside B gave positive Liebermann-Burchard and Keller-Kiliani reactions for steroidal The ¹H nmr spectrum of periploside B exhibited signals for two glycoside having 2-deoxysugar. tertiary methyls (δ 0.65 and 0.93 (3H each s)), one secondary methyl (δ 1.24 (3H d, J 6.0 Hz)), two carbinyl hydrogens (δ 3.60 (1H m) and 3.68 (1H g, <u>J</u> 6.0 Hz)) and one olefinic hydrogen (δ 5.28 (1H brs)) which were virtually identical to those of 7 except the C-3 carbinyl hydrogen signal. In addition to these signals, the signals assigned to canarose molety appeared at δ 1.27 (3H d, <u>J</u> 6.0 Hz), 3.04 (1H t, J 9.0 Hz), 3.22 (1H dq, J 9.0 and 6.0 Hz), 3.50 (1H m) and 4.55 (1H dd, J 9.0 and Comparison of the 13 C nmr data of periploside B with those of 7 revealed that they had 2.0 Hz). identical signals except for C-2, C-3 and C-4 of the aglycone moiety. From these data, it was concluded that periploside B is a congener of glycoside E (7) bearing a C-3 side chain.

The 13 C nmr spectrum of periploside B showed the presence of a carbonyl and a trisubstituted double bond in the C-3 side chain of the composition $C_7H_9O_3$ (ms: m/z 141). From this finding, together with the uv absorption maximum at 262 nm (log ε 3.48 in EtOH) these two groups were considered to be in conjugation. In the ¹H nmr spectrum of periploside B, signals due to an anomeric hydrogen and a carbinyl hydrogen appeared at δ 4.98 (1H s) and 4.64 (1H dq, J 3.0 and 6.0 Hz), respectively, the latter of which were found coupled with the olefinic hydrogen signal at δ 5.72 (1H d, J 3.0 Hz) and the secondary methyl signal at δ 1.45 (3H d, J 6.0 Hz). These spectral data suggested that the C-3 side chain consisted of a 4,6-dideoxy-3-Q-methyl- Δ^3 -2-hexosulose moiety. Further, the close resemblance of the ¹H and ¹³C nmr signals of the hexosulosyl moiety of periploside B to those of affinoside O⁸ demonstrated that they have identical stereochemistry at two chiral centers of this moiety. Accordingly, periploside B was shown to have the structure **2**.

Periploside C, colorless prisms, mp 194-195°C, $[\alpha]_D$ +1.3° (<u>c</u> 0.45, MeOH), responding to Liebermann-Burchard and Keller-Kiliani reactions like periplosides A and B, showed seventy-two carbon signals in its ¹³C nmr spectrum (Tables 1 and 2). A comparative study of the ¹H and ¹³C nmr spectra of periploside C with those of periplosides A and B clarified that periploside C has the same aglycone and C-3 side chain as periploside B, and furthermore, it has identical C-20 side chain like periploside A. Thus, periploside C was determined to have the structure **3**.

It should be noted that periplosides A and C bears orthoester groups in their molecules which are rather uncommon functional groups in natural products.

Among these periplosides, periploside A showed significant anticomplementary activity at the concentration of 1.0 mg/ml by the method of Mayer.⁹

ACKNOWLEDGEMENT

We are thankful to Drs. S. Hatakeyama and C. Konno, this Institute, for supply of authentic 2,6dideoxysugars and valuable discussion.

REFERENCES AND NOTES

- 1) Immunomodulating drugs, 1. Also Part 125 in the validity of Oriental medicines.
- S. Sakuma, S. Kawanishi, and J. Shoji, <u>Chem. Pharm. Bull.</u>, 1980, 28, 163 and references cited therein.
- 3) ¹³C and ¹H nmr spectra were recorded at 125 and 500 MHz, respectively, and unless stated otherwise, ¹³C and ¹H nmr spectra were taken in CDCl₃.
- 4) S. Sakuma, S. Kawanishi, J. Shoji, and S. Shibata, Chem. Pharm. Bull., 1968, 16, 326.

5) S. Kawanishi, S. Sakuma, H. Okino, and J. Shoji, Chem. Pharm. Bull., 1972, 20, 93.

- 6) H. Ishizone, S. Sakuma, S. Kawanishi, and J. Shoji, Chem. Pharm. Bull., 1972, 20, 2402.
- 7) J. B. Stothers, 'Carbon-13 NMR Spectroscopy', Academic Press, New York, 1972, p. 339.
- 8) F. Abe, T. Yamauchi, T. Fujioka, and K. Mihashi, Chem. Pharm. Bull., 1986, 34, 2774.
- 9) E. A. Kabat and M. M. Mayer, 'Experimental Immunochemistry', C. C. Thomas Publisher, Springfield, 1961, p. 133.

Received, 6th May, 1987