MACROCENTRINE: AN UNUSUAL DITERPENOID ALKALOID

Michael H. Benn\*, Francis Okanga, and John F. Richardson Department of Chemistry, The University, Calgary, Alberta, Canada T2N 1N4 Raphael M. Munavu

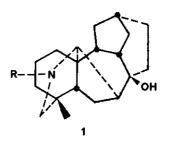
Department of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi, Kenya

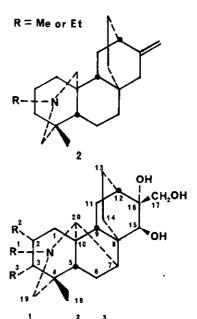
<u>Abstract</u> - Macrocentrine, a new diterpenoid alkaloid from <u>Delphinium macrocentrum</u> Oliv., has been shown to possess an unusual dictyzine-like structure.

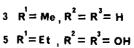
We have investigated the alkaloids of <u>Delphinium macrocentrum</u> Oliv., a plant native to Kenya, and isolated by conventional chromatographic procedures a new and unusual diterpenoid alkaloid which we have named macrocentrine.

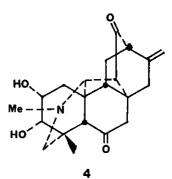
This alkaloid, which crystallized from EtOH-H<sub>2</sub>O in colourless tablets, mp 207-209°C, gave an ei-ms which contained as the base-peak an apparent molecular ion of composition  $C_{22}H_{35}NO_5$  (found m/z 393.2511, calcd. 393.2516) with high-mass fragment ions at m/z 376 (21) and 362 (35) amu. The ir spectrum had  $v_{max}$  (KBr) 3400 cm<sup>-1</sup> (br s, OH), but was devoid of absorptions attributable to carbonyl or olefinic functionalities. The 200 MHz <sup>1</sup>H-nmr spectrum (CD<sub>3</sub>OD, TMS) revealed, <u>inter alia</u>, the presence of a quaternary methyl ( $\delta$  0.81, 3H, s) and an ethyl unit ( $\delta$  1.11, 3H, t J=7Hz), and the absence of methoxyl or methylenedioxy groups.

<u>Delphinium</u> alkaloids usually conform to two main groups of diterpenoids<sup>1</sup>: those with a  $C_{19}$ lycoctonine/aconitine-type skeleton (1); and those derived from a  $C_{20}$  atisine-type one (2). The former is usually methoxylated but not the latter, which is, however, often olefinic. The  $C_{22}$ formulation of macrocentrine taken together with the absence of methoxyl or methylenedioxy groups excluded a structure based on lycoctonine and we therefore turned to consideration of hexacyclic derivatives of the  $C_{20}$  skeleton carrying an N-Et function.


The 50.4 MHz  $^{13}$ C-nmr spectra of macrocentrine in pyridine- $d_5$ , or CD<sub>3</sub>OD-CDCl<sub>3</sub> revealed resonances for 22 C (see Table), in accord with the molecular composition deduced from the ms evidence; and, together with the ir spectrum, excluded olefinic and carbonyl functions. We hypothesised that the formation of the m/z 362 amu fragment-ion corresponded to the loss of a CH<sub>2</sub>OH unit and that this was present in the molecule as a result of the conversion of the exocyclic methylene functionality,


Table: <sup>13</sup>C nmr data for dictyzine (3)and macrocentrine (5).


|      | ₹ <sup>3</sup>      | 5°     | 5 <sup>d</sup>      |
|------|---------------------|--------|---------------------|
| C-1  | 40.2 t              | 31.9 t | 33.0 t              |
| 2    | 20.8 t              | 69.0 d | 70.1 d              |
| 3    | 27.7 t <sup>a</sup> | 67.5 d | 68.5 d              |
| 4    | 34.4 s              | 38.7 s | 39.3 s              |
| 5    | 44.2 d              | 39.6 d | 41.0 d              |
| 6    | 26.6 t <sup>a</sup> | 27.5 t | 28.7 t              |
| 7    | 36.2 d              | 35.7 d | 36 <b>.</b> 1 d     |
| 8    | 42.0 s              | 41.9 s | 42.4 s              |
| 9    | 52.8 d              | 51.5 d | 52.5 d              |
| 10   | 45.6 s              | 45.4 s | 46.0 s              |
| 11   | 21.9 t              | 21.5 t | 22.8 t <sup>a</sup> |
| 12   | 42.8 d              | 42.7 d | 43.6 d              |
| 13   | 23.1 t              | 23.3 t | 24.4 t              |
| 14   | 26.6 t <sup>a</sup> | 22.2 t | 22.6 t <sup>a</sup> |
| 15   | 86.7 d              | 86.0 d | 86.4 d              |
| 16   | 79.8 s              | 79.2 s | 80.4 s              |
| 17   | 59.8 t <sup>b</sup> | 67.3 t | 67.3 t              |
| 18   | 23.6 q              | 21.7 q | 22.8 q              |
| 19   | 67.8 t <sup>b</sup> | 48.7 t | 50.1 t              |
| 20   | 73.5 d              | 75.9 d | 76.8 d              |
| NCH2 | -                   | 49.7 t | 49.4 t              |
| CH3  | -                   | 12.2 q | 12.7 q              |
|      |                     |        |                     |


<sup>a</sup> These values may be interchanged within a column.

- <sup>b</sup> We suggest that these assignments be reversed.
- <sup>C</sup> In CD<sub>3</sub>OD.
- <sup>d</sup> In Py-d<sub>5</sub>.









Looking for models for such a system we encountered dictyzine  $(3)^2$ , and were struck by the very close correspondence of the  $1^{3}$ C-nmr resonances attributed to the C/D ring system, and pendant hydroxymethyl group, of this alkaloid<sup>3</sup> with those found for macrocentrine (see Table). Thus we deduced that macrocentrine was a dihydroxy N-ethyl homologue of dictyzine. Placement of the two additional hydroxyl groups was more problematical. We excluded sites on rings C and D in order to preserve the correspondence of the  $1^{3}$ C-nmr data, and considered attachments to rings A and B. Returning to the <sup>1</sup>H-nmr spectrum of macrocentrine, we observed that there were signals for 5 protons in the region 3.5-5 ppm: an AB pair,  $\delta$  4.00 and 3.52 (each J = 11.5 Hz); a singlet at  $\delta$  3.90; a rather broad multiplet at  $\delta$  3.76 (w<sup>1</sup>/<sub>2</sub> = <u>ca</u>. 10 Hz); and a doublet at  $\delta$  3.19 (J = 4.5 Hz). We attributed these to the diastereotopic hydroxymethyl function, the isolated H-15, and the "extra" diol group respectively. Selective decouplings revealed that irradiation at  $\delta$  3.80 collapsed the doublet at  $\delta$  3.19 to a singlet and also simplified a multiplet at  $\delta$  1.88 ppm; while irradiation at  $\delta$  1.88 ppm converted the multiplet at  $\delta$  3.76 to a clean doublet (J = 4.3 Hz). We concluded that the two "extra" hydroxyl groups formed a vic.-diol unit of the type  $CH_{CH}(OH)CH(OH)-C \leq C$ . This then had to be accommodated in ring A, and we thought that the relatively low abundance of an (M-17) ion in the ms of macrocentrine excluded a hydroxyl at C-1<sup>4</sup>, thus leading us to a 2,3-diol. The magnitude of the observed coupling between the carbinyl protons indicated that these could not be in an axial-axial orientation. As  $2\alpha$ -hydroxylation of C-20 diterpenoids is relatively common<sup>1,5</sup> we were inclined to make this stereochemical assignment and, guided by the precedent provided by hetidine (4)<sup>6</sup>, to construct a cis-diol with a  $3\alpha$ -OH. We had thus arrived at structure 5 for macrocentrine, but without definite proof for the geometry of the diol system.

We therefore resorted to an X-ray crystallographic analysis of the alkaloid. This revealed<sup>7</sup> macrocentrine to indeed have the structure and relative stereochemistry depicted in 5. Macrocentrine is, to-date, an unusual alkaloid: to our knowledge it is only the second example, after dictyzine, of a  $C_{20}$  alkaloid in which the unit usually present as an exocyclic methylene group has been converted to a <u>vic</u>.-diol. This suggests a biosynthetic generation, via epoxidation and subsequent ring-opening of the oxirane, and prompts the thought that these alkloids may be clues to the construction of their  $C_{19}$ -relatives, i.e. that this hydroxylation paves the way for detachment of C-17 from the  $C_{20}$  system while, as originally suggested more than 30 years ago<sup>8</sup>, a 15 $\beta$ -OH may provide the site for a leaving group which results in a rearrangement to the  $C_{19}$ -aconitine/lycoctonine ring system.

## ACKNOWLEDGEMENTS

We thank the Canadian International Development Agency (CIDA) for a scholarship (to F.O.) and financial support; assistance was also provided by way of a grant-in-aid of research from the Natural Sciences and Engineering Research Council of Canada (to M.H.B.). REFERENCES AND NOTES

- 1. S.W. Pelletier and S.W. Page, Natural Products Reports, 1986, 3, 451, and references therein.
- 2. B.J. Salimov, B. Tashkhodzhaev, and M.S. Yunusov, Khim. Pri. Soed., 1981, 86.
- 3. B.S. Joshi, J.K. Wunderlich, and S.W. Pelletier, Canad. J. Chem., 1987, 65, 99.
- M.S. Yunusov, Ya. V. Rashkes, V.A. Telnov, and S. Yu. Yunusov, <u>Khim. Pri. Soed.</u>, 1969, <u>5</u>, 515.
- 5. S.W. Pelletier and N.V. Mody, "The Alkaloids", Vol. 18, ed. R.G.A. Rodrigo, Academic Press Inc., New York, 1981, pp. 99-216.
- 6. S.W. Pelletier, K.N. Iyer, V.K. Bhalla, M.G. Newton, and R. Aneja, Chem. Commun., 1970, 393.
- 7. Full details of this structural determination will be submitted to Acta Cryst. Sec. C.
- 8. R.C. Cookson and M.E. Trevett, <u>J. Chem. Soc.</u>, 1956, 3121; Z. Valenta and K. Wiesner, <u>Chem.</u> and Ind. (London), 1956, 354.

Received, 6th May, 1987