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Abstract —Several pyrimido[4,5-c]isoquinoline derivatives were obtained
from the reaction of 6-{(N-methylfurfurylamino)uracils 1 and DMAD in
refluxing ethancl. The formation of the pyrimidoisoquinoline system was
due to a sequence of the initial Diels-Alder reaction of the furan moiety of

1 and DMAD, and the successive intramolecular Michael addition.

Synthesis of the derivatives containing a pyrido[2,3-d]pyrimidine ring system and their

2 3

potentialities for antitumor< and antibacterial agents” have attracted cur attention, because this

ring system is widely found in biologically actave compounds.4
Previously, we reported a facile synthetic approarch to pyrazolopyridopyrimidine derivatives by an

intramolecular 1,3-dipolar addition reaction of pyrimidine system.l In the course of our
synthetic study of pyridol{2,3-d]}pyrimidines, which is made of a pyridine ring construction onto
pyrimidine system, we wish to communicate here the reaction of 6—(N-methylfurfurylamino)uracils

1 with dimethyl acetylenedicarboxylate (DMAD) giving pyrimido[4,5-c]isoquincline derivatives,
Thus, the Diels-Alder reaction between a furan moiety of 1 and DMAD took place to afford an
oxanorbornadiene system, and the successive Michael addition of enamine part onto the
oxanorbornadiene system resulted in a pyrimido[4,5~c]isoquinoline system formation.

When 1,3-dimethyl derivative la was allowed to react with DMAD (1.1 mol equiv.) in refluxing
ethapol for 2 days, two isomeric 1:1 adducts 2a and 3a were obtained in both 19% yields together
with the starting materials. From their analytical5 and spectral datas, the structures of 2a and
3a were deduced to be 5,6,6a,9,10,10a~hexahydro-6a,%-epoxy-2,4-dimethyl-10,10a-bis(methoxy-
carbonyl)pyrimido[4,5-¢clisoquinolne-1,3(2H,4H)-dione.

Although their configurations of the 10a-position were obscure, the two were corresponding to the
stereoisomers about the 10-position, which were assigned on the basis of the values of the

coupling constant between 9- and 10-H
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Table 1. Reaction of la with DMAD in Several Solvents
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Solvents la/DMAD  2a 3a 4 5 6 Recovered la
ethanol 1/1 19 19 - - — 48
1-pentanol 1/1 17 13 —_ — — 59
acetonitrile 1/1 4 - 14 10 8 20
dioxane 1/1 4 - 14 21 8 37
dioxane 1/2 4 - 9 35 14 21
toluene 11 2 - 11 4 - 26

it turned out that the reaction of la with DMAD was sensitive to the solvents employed. The
reaction proceeded in a more complicated manner in other solvents than alcchols: heating of la
and DMAD in acetonitrile or dioxane afforded the Diels-Alder adduct 47, 1:2 adduct 58; and 5-(2-
propioloylluracil derivative 67 together with 2a as a minor product (Table 1).

In B; attempt to obtain a better understanding for the pathway and solvent dependency of the
reaction, the chemical conversions of 4 were investigated. The results revealed that 4 was a
key intermediate in this reaction, Heating of 4 in ethanol gave a mixture (molar ratio: 12/1) of
2a and lalo, in which the Michael addition of the C-5 of 4 onto the electron-deficient ene moiety
in the oxanorbonadiene system and the retro Diels-Alder reaction tock place, reaspectively. On
the contrary, the heating in dioxane gave only la together with the unreacted 4. The pathway

leading to 5 was also investiéated. Treatment of 2a with DMAD in refluxing dioxane or ethancl

gave a complex mixture of products, including another type of 1:2 adductof la and DMAD. On the
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other hand, the reaction of 4 with DMAD in refluxing dioxane afforded 5 in 83% yield, whereas the
reaction in refluxing ethanol gave 2a predominantly (Scheme 1).

As evident from these findings, the formation of pyrimido[4,5-c]isoquinclines from la and DMAD was
ascribed to be a sequence of two reactions, the Diels—Alder and Michael addition reactions. The
reaction proceeded efficiently in protic solvents such as ethanol. Therefore, we next performed

Scheme 2

R\N
i ¥
N * in ethanol, A,
2 days
R Product/Yield (%}
b) Me 2b (34) 3b (54)
c) Ph 2c (27) 3c (42)

— 2357 —



the reaction of 3-methyl- (1b) and 3-phenyluracil derivative {l¢) with DMAD in ethanol to afford

the expected 211 and 312 ip high total yields (Scheme 2).
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