FIRST STABLE SELENABENZENE ANALOGUE, 2-CYANO-1-METHYL-4-PHENYL-1-SELENANAPHTHALENE: SYNTHESIS AND REACTIONS

Mikio Hori,^{*} Tadashi Kataoka, Hiroshi Shimizu, Kazuhiro Tsutsumi, and Shinya Imaoka Gifu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502, Japan

<u>Abstract</u> - 2-Cyano-1-methyl-4-phenyl-1-selenanaphthalene (<u>1</u>) was synthesized as the first isolable selenabenzene. Its ylidic structure was characterized by the spectral and chemical evidence. The thermal reaction of the selenanaphthalene <u>1</u> afforded [1,2]- (<u>5</u>) and [1,4]-rearranged products (<u>6</u>) together with dimeric compounds <u>7</u>. The photochemical reaction afforded the different [1,4]-rearranged product, ketenimine <u>9</u> and the photo-oxygenated product, 4-phenylcoumarin (10).

Stable thiabenzenes have been synthesized and their reactivities have been extensively investigated,¹ but the selenium-analogues, selenabenzenes, have not been isolated yet. Mislow and his co-workers reported that selenabenzenes are ylidic and less stable than thiabenzenes.² We now report synthesis and reactions of the first isolable selenabenzene analogue stabilized by a cyano group, i.e. 2-cyano-1-methyl-4-phenyl-1-selenanaphthalene (1).

The synthetic route is shown in Scheme 1. 4-Phenyl-1-selenanaphthylium perchlorate $(\underline{2})^3$ reacted with potassium cyanide in dichloromethane to give 2-cyano-4-phenyl-1-selenochrom-3-ene ($\underline{3}$) in 98 % yield. The ¹H nmr spectrum of $\underline{3}$ showed two doublets at δ 4.30 and 5.90 assigned to H(2) and H(3), respectively. Methylation of $\underline{3}$ with methyl iodide in the presence of silver perchlorate afforded selenonium salt $\underline{4}$ in 89 % yield. The ¹H nmr spectrum showed two singlets at δ 3.24 and 3.34 due to the Se-methyl groups. This indicates that the compound $\underline{4}$ is an inseparable mixture of cis- and trans-isomers based on the pyramidal inversion of the selenium atom. The signal of the methyl group in cis- $\underline{4}$ appears at lower field (δ 3.34) than that in trans- $\underline{4}$ (δ 3.24) because of the anisotropic effect of the cyano group. The isomer ratio was trans/cis = 1.1. The selenonium salt $\underline{4}$ was treated with triethylamine in ethanol at 0°C to give the selenanaphthalene $\underline{1}$ as orange prisms, mp 114-115°C (decomp.), in 85 % yield. The ¹H nmr spectrum showed the signals at δ 2.23 (3H, s, CH₃), 6.74 (1H, s, H(3)), and 7.05-7.58 (9H, m, aromatic H), and its ir spectrum had a lower-shifted strong absorption band at 2140 cm⁻¹ due to the cyano group.

Scheme 1

delocalized over the cyano group (<u>1a</u> in Scheme 1). Treatment of <u>1</u> with perchloric acid gave the selenonium salt 4.

The selenanaphthalene <u>1</u> was refluxed in dry benzene for 24 h under nitrogen atmosphere to give 2-cyano-2-methyl-4-phenyl-1-selenochromene (<u>5</u>) and 2-cyano-4-methyl-4-phenyl-1-selenochromene (<u>6</u>) in 18 and 11 % yields, respectively. The physicochemical data of <u>5</u> and <u>6</u> were as follows: compound <u>5</u>: oil; ¹H nmr (δ , ppm) 1.94 (3H, s, CH₃), 5.68 (1H, s, H(3)), 7.05-7.60 (9H, m, aromatic H); ¹³C nmr (δ , ppm) 25.6 (CH₃), 26.2 (C(2)), 121.2 (CN), 123.8, 127.1, 127.2, 128.3, 129.0, 129.1, 129.7, 130.2, 133.8, 140.0 (aromatic C), 145.0 (C(3)), 151.0 (C(4)); ir (ν , cm⁻¹) 2230 (CN); high resolution ms calcd. C₁₇H₃₃NSe. (m/z) 311.0209. found (m/z) 311.0182. Compound <u>6</u>: mp 84.5-86°C as colorless prisms; ¹H nmr (δ , ppm) 1.86 (3H, s, CH₃), 7.08-7.49 (10H, m, olefinic and aromatic H); ¹³C nmr (δ , ppm) 26.5 (CH₃), 49.6 (C(4)), 103.1 (CN), 127.0, 127.3, 128.0, 128.3, 128.7, 139.7 (aromatic C), 145.4 (C(2)), 151.1 (C(3)); ir (ν , cm⁻¹) 2210 (CN); ms (m/z) 311 (M⁺, Se = 80); Anal. C₁₇H₃₃NSe. Other products were too complex to be isolated.

Furthermore, thermal reactions of $\underline{1}$ in the presence of 0.1 molar equivalents of the compounds carrying an active hydrogen afforded the dimeric compounds $\underline{7}$ in addition to $\underline{5}$ and $\underline{6}$ as shown in Scheme 2 and Table 1.

Scheme 2

Solvent	Reagent	Yield (%)		
		<u>5</u>	<u>6</u>	<u> </u>
с ₆ н ₆	_	18	11	-
с ₆ н ₆	malononitrile	17	9	18
с ₆ н ₆	succinimide	15	17	20
с ₂ н ₅ он		18	9	9
снсіз	selenonium salt <u>4</u>	33	2	21

Table 1. Thermal Reactions of Selenanaphthalene 1

One dimeric compound $\underline{7a}$ was determined as the trans-dimer, ¹H nmr spectrum of which showed the signals at δ 2.25 (6H, s, CH₃ x 2), 7.00-7.60 (20H, m, olefinic and aromatic H). Another compound $\underline{7b}$ was determined as the cis-dimer because it was isomerized to $\underline{7a}$ by heating at 235°C or by treatment with silica gel. Since $\underline{7b}$ easily changed to $\underline{7a}$ during the purification, it was not isolated in a pure form. Its ¹H nmr spectrum showed two singlets at δ 2.18 and 2.25 assigned to two methyl groups. And its fragmentation pattern of the EI-ms spectrum was in good agreement with that of the trans-isomer 7a.

In this case, a plausible mechanism for the dimerization is shown in Scheme 3. A small amount of $\underline{1}$ would be protonated by the compounds bearing an active hydrogen to form the selenonium ion $\underline{4}$. The ylidic carbanion of $\underline{1}$ would then attack nucleophilically at C(2) of $\underline{4}$ followed by ring opening of $\underline{4}$. The resulting dimeric intermediate $\underline{8}$ would undergo ring opening and subsequent proton removal to form the dimers $\underline{7a-b}$. Actually, we have examined the reaction of the selenanaphthalene $\underline{1}$ with 0.3 molar equivalents of $\underline{4}$ and obtained the dimeric compounds $\underline{7}$ in 21 % yield.

Scheme 3

Finally, we have investigated the photoreaction of 1. Selenanaphthalene 1 was irradiated with a 400 W high-pressure mercury lamp at room temperature for 8 h to give a [1,4]-rearranged product, ketenimine 9 and unexpected product, 4-phenylcoumarin (10) in 17 and 11 % yields, respectively, as shown in Scheme 4. A few examples of ketenimine formation have been reported in the thermal [2,3]-sigmatropic rearrangement of cyano-stabilized sulfur ylides.⁴ Our finding is the first case

Scheme 4

of ketenimine formation by [1,4]-rearrangement. The structure of 9 was determined by the following physicochemical data: ¹H nmr (δ , ppm) 2.37 (3H, s, CH₃), 7.20-7.90 (10H, m, olefinic and aromatic H); ¹³C nmr (δ , ppm) 7.2 (CH₃), 124.4, 127.1, 128.6, 129.5, 129.7, 130.0, 131.2, 131.6, 131.7, 132.5, 134.4, 134.6, 137.7 (olefinic and aromatic C), 196.7 (=C=); high resolution ms calcd. C₁₇H₃₃NSe. (m/z) 311.0209. found (m/z) 311.0208. On the other hand, the structure of <u>10</u> has been determined by comparison of its ¹H nmr, ir, and ms spectra with those of an authentic sample.⁵ Formation of <u>10</u> presumably proceeds via the peroxide <u>11</u> as shown in Scheme 5. Further investigation of this photo-oxygenation is now going on and will be described in a full paper.

REFERENCES

- M. Hori, "Organic Sulfur Chemistry", ed. by R. Kh. Freidlina, Pergamon Press, New York, 1981, pp. 81; M. Hori and T. Kataoka, <u>Yuki Gosei Kagaku Kyokai Shi</u>, 1987, <u>45</u>, 232.
- J. Stackhouse, G. E. Senkler, Jr., B. E. Maryanoff, and K. Mislow, <u>J. Am. Chem. Soc.</u>, 1974, 96, 7835.
- 3. A. Tadino, L. Christieaens, and M. Renson, Bull. Soc. Roy. Sci. Liege, 1973, 42, 129.
- G. Morel, S. Khamsitthideth, and A. Foucaud, <u>J. Chem. Soc. Chem. Comm.</u>, 1978, 274; G. Morel, M. A. LeMoing-Orlic, S. Khamsitthideth, and A. Foucaud, Tetrahedron, 1982, 38, 527.
- F. Bergmann, M. Weizmann, E. Dimant, J. Patai, and J. Szmuskowicz, <u>J. Am. Chem. Soc.</u>, 1948, 70, 1612; U. K. Pandit and I. P. Dirk, Tetrahedron Lett., 1963, 891.

Received, 4th June, 1987