SYNTHESES OF (-)-1-EPI-SWAINSONINE AND (+)-1,8-DI-EPI-SWAINSONINE

Nobuo Ikota* and Akira Hanaki National Institute of Radiological Sciences, 4-9-1, Anagawa, Chiba 260, Japan

<u>Abstract</u> The syntheses of (-)-l-<u>epi</u>-swainsonine and (+)-l,8di-<u>epi</u>-swainsonine have been achieved from (<u>S)</u>-glutamic acid.

In a previous communication,¹ we reported a total synthesis of (-)-swainsonine (1), which possesses an α -mannosidase inhibitory activity and an immunoregurating activity, from (R)-glutamic acid. Interested in this biological activity, the synthesis of stereoisomers of 1 is a current interest. We now describe the syntheses of 1-epi-swainsonine (2) and 1,8-di-epi-swainsonine (3) from (S)-pyroglutamic acid derivative with the use of similar strategy to prepare (-)-swainsonine.¹ A compound 5, 1 which was prepared by <u>cis</u>-dihydroxylation of the unsaturated lactam 4 with OsO, followed by O-benzylation and subsequent epimerization, was converted to the pyrrolidine derivative 6^2 in 78% yield by removal of the methoxymethyl group followed by reduction with borane-dimethylsulfide complex. Swern oxidation of 6 furnished the aldehyde, which was condensed with allylmagnesium chloride in THF at -78°C to afford a 1.6: 1 ratio of χ^2 and g^2 in 81% yield. On the other hand, reaction of the same aldehyde with diallylcopper lithium in ether at -78°C afforded a 1:2.2 ratio of 7 and 8 in 68% yield. The reactions of Grignard and organocopper reagents with the aldehyde derived from 6 showed opposite diastereoselectivity. The hydroxy group in g was protected as a benzyl ether to afford a compound 9, 2 which was converted into the alcohol 10^2 by hydroboration-oxidation. Mesylation of 10 leads to a bicyclic compound (11), which without purification was debenzylated by catalytic hydrogenation to furnish (+)-1,8-di-epi-swainsonine (3) in 43% yield after purification with Dowex 50W-X8 (H⁺ form), mp 142-143°C, mmp 140-142°C, $[\alpha]_{D}^{20}$ +24.2°(c 0.3, MeOH) (lit.³ mp 138-140°C, $[\alpha]_{D}^{31}$ +18.2°(c 0.57, MeOH)). It was identical with an authentic sample of 3 in the 1 H nmr and 13 C nmr spectra. By a parallel series of reactions, $\underline{\chi}$ was transformed to (-)-1-episwainsonine $(2)^2$ in 39% yield, mp 109-110°C; $[\alpha]_D^{20}$ -33.2°(c 0.85,MeOH); ¹³C nmr (CD₃OD, & 48.97) & 24.56, 34.53, 52.86, 61.96, 72.40, 76.29, 78.15, 84.55; calcd. for C₈H₅NO₃: m/z 173.1049, found; M,173.1032.

<u>Conditions</u> a) BH₃Me₂S, THF, reflux. b) aq. HCl/MeOH, 70°C. c) NaH, BnBr/DMF-THF. d) BH₃, THF; then 30% H₂O₂, 12% aq. NaOH. e) MsCl(1.2 eq.), triethylamine, CH₂Cl₂. f) H₂-10%Pd/C, HCl-EtOH.

AKNOWLEDGMENT

The authors are grateful to Prof. T. Hino (Chiba Univ.) and Prof. K. Koga (Univ. of Tokyo) for spectral measurements, and to Prof. K. Tadano (Keio Univ.) for providing a sample and spectral data of 3. Partial financial support of this research by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Japan (No. 62570957) and the Japan Research Foundation for Optically Active Compounds is gratefully acknowledged.

REFERRENCES AND NOTES

1) N. Ikota and A. Hanaki, <u>Chem. Pharm.Bull.</u>, 1987, <u>35</u>, 2140. References for the other synthesis of <u>1</u> and its stereoisomers were cited therein. 2) Satisfactory spectral and analytical data were obtained for this compound. 3) The $[\alpha]_D$ value of <u>3</u> was first reported to be -35.6°(MeOH). Y. Iimura, Y. Hotta, C. Fukabori, K. Tadano, and T. Suami, <u>J. Carbohydr. Chem</u>., 1986, <u>5</u>, 147; <u>idem</u>, <u>Bull. Chem. Soc. Japan</u>, 1986, <u>59</u>, 3885. Prior to submitting this paper, we had communications regarding the $[\alpha]_D$ of <u>3</u> with Prof. K. Tadano. Prof. Tadano reexamined the $[\alpha]_D$ of <u>3</u> previously prepared and found that <u>3</u> had $[\alpha]_D$ +18.2°(MeOH).

Received, 23rd June, 1987