SYNTHESIS OF 5-OXA-13-THIAPROTOBERBERINE DERIVATIVES

János Szabó^{*}, Gábor Bernáth, and ⁺Pál Sohár Institute of Pharmaceutical Chemistry, University Medical School, Szeged, POB 121, H-6701 Szeged, Hungary ⁺Spectroscopic Department, EGIS Pharmaceuticals, POB 100, H-1475 Budapest, Hungary

<u>Abstract</u> - With phosgene or aliphatic aldehydes, 6,7-dimethoxy-2-(2-hydroxyphenyl)-3,4-dihydro-2<u>H</u>-1,3-benzothiazine afforded novel 10,11-dimethoxy-6<u>H</u>,8<u>H</u>,13<u>a</u><u>H</u>[1,3]benzoxazino[4,3-b][1,3]benzothiazine derivatives, members of a new heterocyclic ring system.

Through the reaction of 6,7-dimethoxy-2<u>H</u>-1,3-benzothiazine and salicyloyl chloride, we earlier synthesized 2,3-dimethoxy-6<u>H</u>,8<u>H</u>,13<u>AH</u>[1,3] benzothiazino[4,3-<u>b</u>][1,3] benzoxazin-8-one, the first representative of a novel heterocyclic system.² In the course of our work with the aim of the synthesis of further protoberberine derivatives, we sought a synthetic route to 5-oxa-13-thiaprotoberberines. In these hitherto unknown heterocycles, the carbon atoms in positions 5 and 13 on the protoberberine skeleton are substituted by hetero atoms.

 $6,7-\text{Dimethoxy-2-(2-hydroxyphenyl)-3,4-dihydro-2<u>H</u>-1,3-benzothiazine (<u>2</u>) seemed to be an appropriate starting material for the synthesis of the target molecules. Compound <u>2</u> was synthesized by the condensation of 4,5-dimethoxy-2-mercaptobenzylammonium chloride and salicylaldehyde in an analogous way to the method³ elaborated for the synthesis of this family of compounds. On the reaction of <u>2</u> with phosgene in benzene in the presence of triethylamine, 10,11-dimethoxy-6<u>H</u>,6<u>H</u>,13<u>a</u><u>H</u>[1,3]benzoxazine [4,3-b][1,3]benzothiazin-6-one (<u>2</u>) was obtained.$

Condensation of the dihydro-1,3-benzothiazine derivative $\underline{2}$ with aliphatic aldehydes in ethanolic solution gave the 6-unsubstituted ($\underline{4a}$), or the corresponding 6-alkyl-10,11-dimethoxy-6<u>H</u>,8<u>H</u>,13<u>a</u><u>H</u>[1,3]benzoxazino[4,3-<u>b</u>][1,3]benzothiazine derivatives ($\underline{4b}$ -<u>d</u>). The structures of the novel compounds were determined by elemental analysis plus ir, ¹H and ¹³C nmr spectroscopy. Spectral data supporting structure <u>2</u> are as follows. The AB-type multiplet (2xd) of the methylene protons in the ¹H nmr spectrum confirm their non-equivalence (Table 1), indicating the cyclic structure. The incorporation of the <u>o</u>-hydroxyphenyl moiety is proved by the appearance of the sig-

nals of the four aromatic protons in the ¹H, and those of the six carbon atoms in the ¹³C nmr spectrum (Table 2). The characteristic downfield signals of the methine group between the two hetero atoms in the ¹H and ¹³C nmr spectra can also be identified (5.75, and 61.7 ppm, respectively). The sharp \mathbf{v} NH and diffuse (phenolic) \mathbf{v} OH ir bands appear at 3255 and between 3200 and 2400 cm⁻¹, respectively.

Table 1. ¹H nmr data (chemical shifts in ppm, $S_{TMS} = 0$ ppm and coupling constants in Hz) on compounds 2, 3 and 4a-d in CDCl₃ solution at 250.15 MHz

Com-	OCH3		NCH2		H-13a	H-9,12		ArH-1,2,3,4	н_6 [.]		
pound	2xs	(2x3H)	Pos.8	(2H) ^a	в (1H)	2xs (2x1H)	m (4H)			
2	3.82	3.86	3.99	4.18	5.57	6.51	6.60	6.8-7.4		_	
3	3.84	3.87	4.48	5.38	6.17	6.56	6.67	6.9~7.5		-	
4 <u>a</u>	3.82	3.83	3.90	4.53	5.86	6.53	6.57	6.9-7.3	4.63 ^a 5.02 ^a	-	
<u>4</u> b	3.81	3.84	4.14	4.32	6.05	6.50	6.56	6.9-7.3	5.06 ^b	1.54 d°	
4 <u>c</u>	3.82	3.85	4.12	4.32	6.06	6.50	6.56	6.9-7.3	4.93 ^d	1.11 t [°] , 1.85 [°]	
4 <u>4</u> ₫	3.82	3.85	4.14	4.32	6.05	6.51	6.57	6.9-7.3	4.96 ^d	0.96 t ^c , 1.4-1.9 ^e	

^a AB-type spectrum (2xd), $\underline{J}(A,B)$: 16.5-17.0 Hz; for compound $\underline{4\underline{a}} \underline{J}(A,B)$ is 7.5 Hz for the methylene group in Pos.6; ^b qa (\underline{J} : 5.6 Hz); ^c CH₃ (\underline{J} : 7.2-7.5 Hz); ^d dd (\underline{J} : 6.1 and 3.5 Hz); ^e CH₂, m, 2H ($\underline{4\underline{a}}$), 4H ($\underline{4\underline{d}}$).

Structure $\underline{3}$ is supported by the absence of $\sqrt[3]{0H}$ and $\sqrt[3]{NH}$ ir bands, and by the appearance of the $\sqrt[3]{0C}=0$ band of the urethane moiety at 1730 cm⁻¹ in the ir spectrum and the corresponding carbonyl line in the ¹³C nmr spectrum (149.6 ppm). The 0.60 ppm downfield shift of the H-13a singlet relative to that for $\underline{2}$ is further supporting evidence for structure $\underline{3}$. The AB-type multiplet of the 8-methylene group and the significant downfield shift (0.49, and 1.20 ppm, respectively) of both doublets (mainly that which corresponds to the hydrogen coplanar with the carbonyl bond)

Com- pound	C-1 ^b	C-2	С-3 ^р	C-4a	C5	C-13b	C6	C8	C-8a	C-9,12	C-10,11	C-12a	C-13a	OMe
₽c	128.3	119.6	130.1	117.1	157.0	119.6	**	46.5	122.5	111.4	147.5 148.9	122.5	61.7	56.3
<u></u> 2	126.0	124.7	130.6	116.7	149.0 ^d	117.0	149.6 ^d	48.2	123.0	111.1 111.6	148.1 148.9	120.4	59.7	56.2 56.3
<u>4a</u>	126.9	120.7	129.2	116.7	152.4	119.4	77.5	52.1	123.9	110.6 111.5	.147.0 148.7	121.6	62.9	55.9 56.1
4 ⊵	126.3	120.5	129.1	116.6	152.6	118.6	81.5	51.0	125.1	110.5 111.7	146.7 149.0	122.0	64.3	55.9 56.2
4 <u>e</u>	126.0	120.1	128.8	116.4	152.5	118.5	84.7	50.5	124.7	110.2 111.5	146.5 148.7	121.6	64.3	55.6 55.9
4립	126.5	120.6	129.3	116.9	153.0	119.1	84.5	51.0	125.3	110.6 111.9	146.9 149.2	122.0	64.8	56.1 56.4

Table 2. ¹³C nmr chemical shifts for compounds $\underline{2}$, $\underline{3}$ and $\underline{4}\underline{a}-\underline{d}$ in CDCl₃ solution at 20.15 MHz^a ($\boldsymbol{\delta}_{TMS} = 0$ ppm)

Signals of R: Me 18.5 ($\frac{4}{2}$); Me 7.6, CH₂ 24.4 ($\frac{4}{2}$ c); Me 14.1, CH₂ 17.2^e, 34.0. ^a In the case of 2 at 62.89 MHz; ^{b,d} Reversed assignments may also be possible; ^c All signals are broadened (the line pairs C-2,13b, C-9,12 and OMe in Pos. 10, and 11 are coalesced) due to hindered rotation about the C-13a, C-13b axis; ^e C_{2} H₂CH₃ group.

relative to those for $\frac{2}{2}$, due to the -I and anisotropic effects of the carbonyl group, ⁴ are also indicative of structure 3.

As evidence of structures 4a-d, the ir $\sqrt[3]{0}$ H and $\sqrt[3]{NH}$ bands are absent, while the ¹H and ¹³C nmr signals of the substituents R can be identified. The characteristic downfield shift of the ¹³C nmr line at around 80 ppm of the 6-methine carbon between the oxygen and nitrogen atoms, the non-equivalence of the 8-methylene protons (AB multiplet), the downfield singlet of H-13a at around 6 ppm, and the corresponding carbon resonance at around 64 ppm, are decisive proof of the structure.

EXPERIMENTAL

Melting points are uncorrected. Ir spectra were run on an NIC 7199 FT-IR/GC spectrometer, in KBr pellets. ¹H and ¹³C nmr spectra were recorded at 250.13 (¹H), and 62.89 or 20.14 (¹³C) MHz, respectively, at room temperature in CDCl₃ solution on a Bruker WM 250 or a WP-80 SY FT spectrometer controlled by an ASPECT 2000 computer, in 5 or 10 mm tubes, using TMS as internal reference.

<u>6.7-Dimethoxy-2-(2-hydroxyphenyl)-3.4-dihydro-2H-1.3-benzothiazine</u> ($\underline{2}$). - To 1.17 g (5 mmol) of 4.5-dimethoxy-2-mercaptobenzylammonium chloride suspended in 20 ml of ethanol, 0.61 g (5 mmol) of salicylaldehyde and 0.3 g of K₂CO₃ dissolved in 2 ml of water were added. After standing for 30 min, the precipitated crystals were collected by filtration (1.8 g; 83.8%). On recrystallisation from benzene, colourless

needles were obtained, m.p. 157-158 °C.

 $C_{16}H_{17}NO_{3}S$ (303.4) Calcd. C 63.34 H 5.65 N 4.62; Found C 63.28 H 5.53 N. 4.42. <u>10,11-Dimethoxy-6H,8H,13aH[1,3] benzoxazino[4,3-b][1,3] benzothiazin-6-one</u> (<u>3</u>). -1.52 g (5 mmol) of compound <u>2</u> in 20 ml of benzene, 0.50 g (5 mmol) of phosgene in 2.5 ml of toluene and 1.01 g (10 mmol) of triethylamine were mixed at room temperature during 1 h. The precipitated triethylammonium chloride was removed by filtration, the solution was evaporated and the residue was crystallized from ethanol to give colourless prisms (0.74 g; 45%), mp 200-201 °C. Anal. calcd. for $C_{17}H_{15}NO_{4}S$ (329.4): C 61.99 H 4.59 N 4.25. Found C 61.80 H 4.70 N 4.50. <u>General Procedure for Preparation of 4a-d</u>. - To 0.61 g (2 mmol) of compound <u>2</u>, 20 ml of ethanol and 5 mmol of the corresponding aldehyde were added, and the mixture was stirred for 2 h. The precipitated crystals were filtered off and recrystallized from ethanol to give the colourless compounds <u>4a-d</u> (cf. Table 3).

Com-	Yield	Mp	Formula	Analysi	Analysis/% Calcd./Found			
pound	%	°c	(Mol. weight)	C	Н	N		
4a	80.6	158-159	C ₁₇ H ₁₇ NO ₃ S	64.74	5.44	4.44		
			(315.4)	64.58	5.70	4.64		
4 <u>b</u>	92	169-170	C ₁₈ H ₁₉ NO ₃ S	65.63	5.81	4.25		
	2	203 110	(329.4)	65.50	5.79	4.56		
<u>4</u> ⊆	83.9	130–131	C ₁₀ H ₂₁ NO ₃ S	66.44	6.16	4.08		
	0.0		(343.4)	66.61	6.46	4.37		
43	85.1	160-161	C ₂₀ H ₂₃ NO ₃ S	67.20	6.49	3.92		
= #			(357.4)	66.99	6.72	4.23		

Table 3. Physical and analytical data on compounds $4\underline{a}-\underline{d}$

ACKNOWLEDGEMENT

Thanks are due to Dr. S. Holly (Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest) for recording the ir spectra.

REFERENCES AND NOTES

- This paper is regarded as part 129 of the series: Saturated Heterocycles. Part 128: P. Sohár, G. Stájer, and G. Bernáth, <u>Magn. Reson. Chem.</u>, submitted for publication.
- 2. L. Fodor, J. Szabó, G. Bernáth, and P. Sohár, Tetrahedron Lett., 1984, 25, 2013.
- J. Szabó, I. Varga, E. Vinkler, and É. Barthos, <u>Acta Chim. Acad. Sci. Hung.</u>, 1972, <u>72</u>, 213.
- P. Sohár, Nuclear Magnetic Resonance Spectroscopy, CRC Press, Boca Raton, Florida, 1983, Vol. 1, pp. 32, 33 and Vol. 2, p. 132.

Received, 30th March, 1987