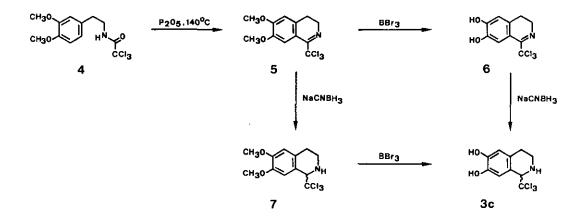

FIRST SYNTHESIS OF 1-TRICHLOROMETHYL-6,7-DIHYDROXY-TETRAHYDRO-ISOQUINOLINE - AN IMAGINABLE CHLORAL-DERIVED MAMMALIAN ALKALOID¹ Gerhard Bringmann^{*}, Annette Hille, and Marianne Zsiška

Organisch-Chemisches Institut der Universität Münster Orléansring 23, D-4400 Münster, West Germany

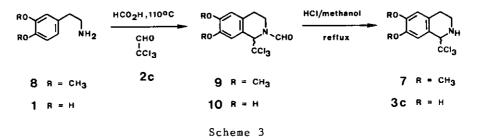
<u>Abstract</u> 1-Trichloromethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (<u>3c</u>), a potential condensation product from dopamine (<u>1</u>) and chloral (<u>2c</u>), could be prepared for the first time, by a stepwise Bischler-Napieralski pathway, and, more directly, under special Pictet-Spengler conditions. The results indicate that <u>3c</u> is <u>not</u> a probable alkaloid in man.


Reactive carbonyl compounds like acetaldehyde (<u>2a</u>) and pyridoxal phosphate (<u>2b</u>) can undergo spontaneous Pictet-Spengler² type condensation reactions with aryl ethylamines like dopamine (<u>1</u>) in mammalians³, leading to tetrahydroisoquinoline alkaloids. Some of these (like <u>3a</u>) have already been known, in optically active form, from the plant kingdom, whereas others, e.g. the vitamin B_6 derived pyri-doxyl alkaloid <u>3b</u>, represent completely novel structures⁴.

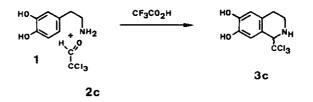
Scheme 1

A formally highly reactive aldehyde, for which the formation of alkaloid-type heterocycles has to be taken into consideration, is chloral (2c), the oldest synthetic narcotic⁵. Obviously still indispensable e.g. for an interruption of the <u>status epilepticus</u>, its hydrate is still administered in gram quantities, even to children - despite well known side effects to heart, kidneys, and liver, and despite the existing danger of addiction⁶.

An examination of the reactivity of chloral $(\underline{2c})$ towards dopamine $(\underline{1})$ is interesting not only with respect to the mentioned chloral therapy, but also on account of the expected trichloromethyl tetrahydroisoquinoline alkaloid $\underline{3c}$ - an unprecedented structural type with possibly remarkable physiological properties: $\underline{3c}$ simultaneously bears the pharmacophoric aryl ethylamine element like its neurotransmitter precursor dopamine ($\underline{1}$), and the huge, lipophilic CCl₃ group, common to the insecticide DDT and to a small number of natural products, e.g. from marine organisms⁷. However, condensation experiments reveal that dopamine (<u>1</u>) does not form tetrahydroisoquinolines with chloral⁸ under "physiological conditions", not even at elevated temperature, or under water-free conditions, starting from non-hydrated chloral (<u>2c</u>), itself. In order to be able to identify even trace amounts of <u>3c</u> that might, nonetheless be formed <u>in vivo</u>, as well as for an analysis of potential decomposition products and for an investigation of its biological activity, we consequently have developed a first, stepwise, but "secure"⁹ pathway to <u>3c</u>, involving a Bischler-Napieralski ring closure (see Scheme 2):



The trichloroacetamide $\underline{4}^{10}$, prepared from homoveratrylamine and trichloroacetyl chloride (97 %) proves to be astonishingly stable, e.g. towards POCl₃ in refluxing toluene. It can, nonetheless, quite conveniently be ring closed under more drastic Bischler-Napieralski conditions, e.g. using P_2O_5 /seasand in refluxing xylene, to give $\underline{5}^{11}$ (colourless crystals of mp 122°C) in 42 % yield (44 % of $\underline{4}$ reisolated by crystallization from cyclohexane). $\underline{5}$ is thermally stable but rapidly decomposes photochemically. From $\underline{5}$, the target compound $\underline{3c}$ can be obtained by two different pathways: O-Demethylation of $\underline{5}$ with BBr₃ in dichloromethane gives $\underline{6}^{11}$ as yellow crystals (hydrobromide; mp >205°C [decomp.], yield 93 %), sensitive to light and air. Further reduction with NaBH₄, or, far better, with NaCNBH₃ (yield 93 %) affords the free tetrahydroisoquinoline $\underline{3c}^{11}$ as colourless crystals (mp >130°C [decomp.]). Better yields, starting from $\underline{5}$, are obtained, by first performing the reduction step (NaCNBH₃) to give the still protected tetrahydroisoquinoline $\underline{7}^{11,12}$ (mp 116°C, yield 92 %), which can then easily be O-demethylated, again with BBr₃, to afford 3c in 97 % yield.


With this reference compound <u>3c</u> now readily available, and in view of its thermal stability, especially under acidic conditions, we looked more closely at more direct synthetic strategies, using special Pictet-Spengler conditions, such as ring closure reactions via N-acyliminium ions, which have been found to be suited even

for the synthesis of tetrahydroisoquinolines entirely lacking oxygen functions¹³. Thus, refluxing homoveratrylamine (8) in formic acid and subsequent addition of water-free chloral (2c) (1 equivalent) indeed affords the corresponding tetrahy-droisoquinoline formamide 9^{11} (mp 110° C, yield 85 %) (see Scheme 3):

Encouraged by this first successful Pictet-Spengler condensation with chloral $(\underline{2c})$, we have analogously reacted unprotected dopamine $(\underline{1})$, to afford $\underline{10}^{11}$ (mp >198°C [decomp.], yield 89 %), thus saving a subsequent O-demethylation step. N-Deformylation of $\underline{10}$ by treatment with 0.5 N hydrochloric acid in methanol (reflux) yields $\underline{3c}$ (88 %), identical with the material obtained above in the four-step Bischler-Napieralski synthesis.

Still more rationally, the Pictet-Spengler condensation of $\underline{1}$ with water-free chloral ($\underline{2c}$) can be performed in refluxing trifluoroacetic acid (95 %), then directly leading to unprotected $\underline{3c}$ (see Scheme 4)!

Scheme 4

This successful one-step synthesis of $\underline{3c}$ allows the facile preparation of this potential mammalian alkaloid for extended physiological tests, and as a reference substance for its search in body liquids of patients treated with chloral hydrate.

The lacking tendency of chloral $(\underline{2c})$ to react with dopamine $(\underline{1})$ spontaneously and nonenzymatically under physiological conditions, combined with the pronounced instability of $\underline{3c}$ at neutral and basic pH-values, however, indicates that the occurrence of l-trichloromethyltetrahydroisoquinolines does not have to be expected.

ACKNOWLEDGEMENT

This work was supported by the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen and by the Fonds der Chemischen Industrie.

REFERENCES AND NOTES

- 1. "Endogenous Alkaloids in Man", part 5, for part 4, see ref. 3e.
- 2a. A. Pictet and T. Spengler, Ber., 44, 2030 (1911).
- b. W. Whaley and T. Govindachari, Org. React., 6, 151 (1951).
- 3a. A. Brossi, Heterocycles, 3, 343 (1975).
- b. M.A. Collins, "Alcohol and Opiates", ed. by K. Blum, Academic Press, New York, 1977, p. 155.
- c. G. Bringmann, Naturwissenschaften, 66, 22 (1979).
- d. M.A. Collins, "The Alkaloids", Vol. XXI, ed. by A. Brossi, Academic Press, New York, 1983, p. 329.
- e. G. Bringmann, S. Schneider, and A. Hille, <u>Nachr. Chem. Tech. Lab.</u>, <u>34</u>, 222 (1986).
- G. Bringmann and S. Schneider, <u>Angew. Chem.</u>, <u>98</u>, 167 (1986); <u>Angew. Chem.</u> Int. Ed. Engl., <u>25</u>, 177 (1986).
- 5a. C. Stumpf, "Neuropharmakologie", 3rd ed., Springer-Verlag, Wien, 1985, p. 56.
- b. W. Pschyrembel, "Klinisches Wörterbuch", 255th ed., de Gruyter, Berlin, 1985,
 p. 272.
- 6a. G. Kuschinsky and H. Lüllmann, "Kurzes Lehrbuch der Pharmakologie und Toxikologie", 8th ed., Thieme Verlag, Stuttgart, 1978, p. 210.
- b. E. Mutschler, "Arzneimittelwirkungen", 8th ed., Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1986, p. 160.
- 7. For a recent review, see: D.J. Faulkner, Nat. Prod. Rep., 1986, 1.
- A similar lack of reactivity of chloral towards aryl ethyl amines had been described for tryptophan: H.R. Snyder, C.H. Katz, S.M. Parmerter, and E.C. Spaeth, J. Am. Chem. Soc., 70, 219 (1948).
- 9. However, also for Bischler-Napieralski-type reactions, difficulties had to be expected, due to the report^{2b} that trichloroacetamides had failed to give the desired cyclization products.
- C. Viel, J.-M. Arnaud, R. Dorme, A. Cheutin, and P. Rumpf, <u>Bull. Soc. Chim.</u> <u>France</u>, <u>1967</u> (2), 431.
- All new compounds have been fully characterized by spectroscopic and analytic methods. Details will be reported in a full paper.
- 12. <u>7</u> had previously been prepared by trichloromethylation of 6,7-dimethoxy-3,4dihydroisoquinoline. However, no experimental, physical, or spectroscopic data had been denoted: S. Queroix and J. Gardent, <u>C. R. Acad. Sci. Paris (C),</u> <u>276</u>, 703 (1973).
- 13. L.K. Lukanov, A.P. Venkov, and N.M. Mollov, Synthesis, (in press).

Received, 5th June, 1987