BIS(4-METHYL-2-THIAZOLYL)GUANIDINES. PREPARATION AND PHYSICOCHEMICAL PROPERTIES

Reiko Yoda* and Yoshikazu Matsushima

Kyoritsu College of Pharmacy, Shibakoen 1-5~30, Minato-ku, Tokyo 105, Japan

<u>Abstract</u> — Eighteen N-substituted and N,N-disubstituted N',N''-bis(4-methyl-2-thiazolyl)guanidines were prepared by the reaction of N,N'-bis(4-methyl-2-thiazolyl)-S-methyliso-thiourea with amines. Their ultraviolet, infrared, ¹H- and ¹³C-nuclear magnetic resonance and mass spectral data supported the structures.

Our previous studies 1^{-8} have shown that 2-thiazolylthioureas are potentially useful chelating agents for spectrophotometric determination of metal ions. In the course of the studies, we found⁹ that the pyrolysis of N-methyl-N'-(4methyl-2-thiazolyl)-S-methylisothiourea afforded N-methyl-N',N''-bis(4-methyl-2~ thiazolyl)guanidine (1). Similarly the pyrolytic product of N-ethyl-N'-(4~ methyl-2-thiazolyl)-S-methylisothiourea was N-ethyl-N',N''-bis(4-methyl-2-For the identification of the compounds, they were thiazoly1)guanidine (2). prepared separately by the reaction of N,N⁺-bis(4-methyl-2-thiazolyl)-S-methylisothiourea with methylamine or ethylamine. Use of other mono- or disubstituted amines in the place of methylamine or ethylamine in the reaction gave N-mono- or N.N-disubstitued analogs of 1 and 2. This provides a means of facile synthesis of N,N'-bis(2-thiazolyl)guanidines.

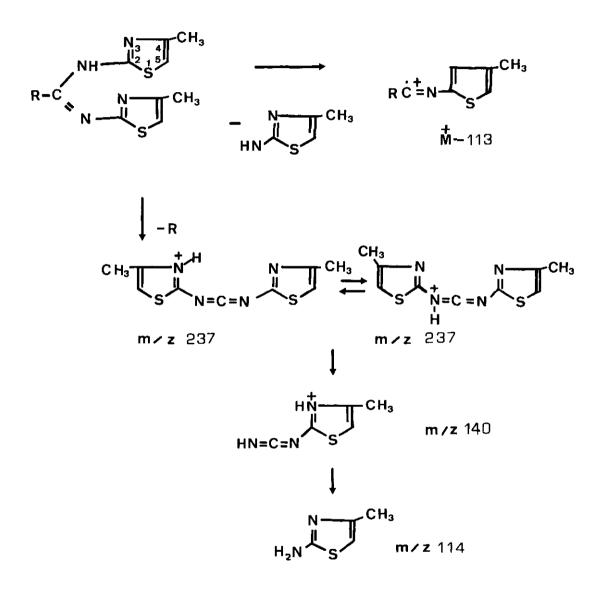
Since there are many guanidine derivatives of biological and medical interests, we prepared a number of bis(4-methyl-2-thiazolyl)guanidines by the reaction and examined their biological activities. This paper describes their physicochemical properties.

EXPERIMENTAL

N,N-bis(4-Methyl-2-thiazolyl)-S-methylisothiourea was prepared by the method of Ledovskikh and Shapovalova.¹⁰ The amines used in the reaction were obtained from commercial sources. Two reactants were mixed without solvent and heated at 120-160°C. Heating was kept for 3-10 min for aliphatic amines and 2-6 h for aromatic amines. Upon cooling to room temperature, part of the products crystallized out of solution. The products were purified through chromatography on silica gel and recrystallization. Yields were in the range of 40-70 %. A JEOL JMS-D100 mass spectrometer, a JEOL JNM-FX200A FT-nuclear magnetic resonance (NMR) spectrophotometer [270 MHz], a Shimadzu UV-200s double-beam spectrometer and a Hitachi EPI-G3 infrared (IR) spectrometer were used through out the present study.

RESULTS AND DISCUSSION

Eighteen guanidines were prepared. Compounds 1 and 2 were described in the previous paper.⁹ Other sixteen guanidines (3-18) have not been described in the literature. Table 1 lists the compounds with analytical data and the absorption maxima in the ultraviolet (uv) region. Ir and ¹H-nmr data are tabulated in Table 2. ¹³C-Nmr and mass spectral data are summarized in Tables 3 and 4, respectively.


The 13 C-Nmr spectra were measured in dimethylsulfoxide-d₆ (DMSO-d₆). The assignments of the chemical shifts were confirmed by long-range selective proton decoupling experiments. In mass spectra, all compounds showed the peak assignable to the molecular ion (M⁺). The fragmentations characteristic of the series of the compounds are shown in Chart 1. The analytical results and spectral properties shown in Tables support the proposed structures.

Biological activities of the compounds examined were toxicity, metabolism, pharmacological activities on central nervous system, cardiovascular system, gastrointestinal tract and inflammation in experimental animals and antimicrobial activities. The results will be described elsewhere.

ACKNOWLEDGEMENT

This work was supported in part by The Science Research Promotion Fund of the

Japan Frivate School Promotion Foundation. Thanks are due to the members of Department of Physical Chemistry, the Central Research Laboratories, Sankyo Co. Ltd., for elemental analyses and high resolution mass spectra.

Chart I

	Table 1	ANALYTICA	L AND A	BSORPT	ION SPE	CTRAL DATA	
Сопро		mp(^O C) ent(recrys Mol. Form		tal an alcd. Found.			Absorption maximaa) nm (ε)
3	(CH ₃)2 ^N acetone-cy	163 clohexane C ₁₁ H ₁₅ N ₅ S	46.95 (46.93	5.37 5.36	24.89 24.58	22.79 22.91)	240sh (6,800) 277sh (9,700) 313 (15,200)
4	(C ₂ H ₅) ₂ N	144 EtOH C ₁₃ H ₁₉ N ₅ S		6.19 6.08	22.63 22.58	20.72 20.92)	243sh (6,310) 270sh (6,100) 317 (11,800)
5	(CH ₃) ₂ NCH ₂ CH ₂ NH ace	80 tone-H ₂ 0 C ₁₃ H ₂₀ N6S	48.12 (48.05 2	6.21 6.12	25.90 25.95	19.76 19.67)	271 (11,800) 280sh(11,100) 318 (21,000)
6	(C ₂ H ₅) ₂ NCH ₂ CH ₂ NH ace	$58 tone-H_20 C_{15}H_{24}N_6S$	51.11 (51.10 2	6.86 6.82	23.84 23.88	18.20 18.49)	271 (14,000) 280sh(13,000) 318 (25,000)
7	ONCH2CH2NH ace	148-150 tone-H ₂ 0 C ₁₅ H ₂₂ N60	49.16 (49.22 ¹⁵ 2	6.05 6.05	22.93 22.91	17.50 17.55)	271 (11,600) 280sh(10,600) 318 (20,500)
8	C6H5NH	123 EtOH-H ₂ O C ₁₅ H ₁₅ N ₅ S	54.69 (54.51 2	4.59 4.44	21.26 21.14	19.47 19.55)	238sh (7,900) 288sh(16,200) 324 (22,500)
9	p-F-C ₆ H ₄ NH	167 2-PrOH C ₁₅ H ₁₄ N ₅ S	51.85 (52.05 2 ^F	4.06 4.13	20.16 20.10	18.46 18.65)	240 (7,300) 300sh(17,500) 326 (21,400)
10	p-CF ₃ -C ₆ H ₄ NH	175 2-PrOH C ₁₆ H ₁₄ N ₅ S	48.35 (48.53 2 ^F 3	3,55 3,72	17.62 17.61)		245 (8,600) 325 (17,500) 355sh(21,400)
11	р-С1-С6H4NH	164 2-PrOH C ₁₅ H ₁₄ N ₅ S	49.51 (49.61 2 ^{C1}	3.88 3.99	19.25 19.09)		243 (9,000) 300sh(19,400) 327 (24,200)
12	m,p-(CH ₃) ₂ C ₆ H ₃ NH 2-1	147 PrOH-H ₂ 0 C ₁₇ H ₁₉ N ₅ S	57.11 (57.25 2	5.36 5.28	19.59 19.32)		240sh (8,500) 280 (16,200) 322 (23,400)
13	o,m-(CH ₃) ₂ C ₆ H ₃ NH	133 EtOH-H ₂ O C ₁₇ H ₁₉ N ₅ S	57.11 (57.06 2	5.36 5.44	19.59 19.54	17.94 17.69)	279 (13,900) 318 (19,600)
14	$p-(CH_3)-m-(NO_2)-C_6H_3NH$ ace	192-193 ^{tone-H} 20 ^C 16 ^H 16 ^N 60	49.47 (49.38 2 ⁸ 2	4.15 4.03	21.63 21.45)		237 (11,000) 323 (20,000) 358 (13,000)
15		182-183 ^{tone-H} 20 C ₁₆ H ₁₆ N ₆ 0	49.47 (49.16 2 ⁵ 2	4.15 4.10	21.63 21.06)		240 (11,000) 321 (21,000) 356 (16,000)
16	H ₃ C USNH	197 acetone ^C 13 ^H 14 ^N 6 ^S	44.55 (44.39 3	4.03 4.06	23.98 23.27)		250 (4,900) 331 (20,300) 360 (15,700)
17	CH ₂ CH ₂ NH	144-146 StOH-H ₂ 0 C ₁₉ H ₂₀ N ₆ S	57.55 (57.35 2	5.08 5.03	21.19 21.22	16.17 16.12)	273 (16,700) 280 (16,700) 290 (14,500) 318 (20,500)
18	$H_3C N_N O$ acet	201 tone-H ₂ 0 C ₂₀ H ₂₁ N ₇ 0	54.65 (54.57 S ₂	4.82 4.81	22.31 22.37	14.59 14.72)	248 (11,400) 298 (20,700) 323 (18,600)

.

Table	2.
Table	2.

IR AND ¹H-NMR DATA

Compd.	IRν _{max} (KBr) ^{a)}		¹ H-NMR(CD) thiazo	¹ H-NMR(CDCl ₃ , room temp.) ^b) thiazole other signals			
	1700-140	0 cm ⁻¹	4-CH ₃	5-н			
3	1594s 1545vs	1480s 1448s	2.31 d,3Hx2	6.36 d,1Hx2	2.97(s,6H,(CH ₃) ₂ N)		
4	1610s 1580vs	1405s 1475s 1400s	(J=1.0Hz) 2.33 d,3Hx2 (J=1.0Hz)	(J=1.0Hz) 6.35 d,1Hx2 (J=1.0Hz)	1.18(t,6H,J=7.3Hz,CH ₃ x2) 3.40(q,4H,J=7.0Hz,CH ₂ x2)		
5	1504s 1630s 1560s	1530m 1510m 1445vs	(J=1.0Hz) 2.29 6H	(J=1.0Hz) 6.22 6.33 1Hx2	2.29(6H,(CH ₃) ₂ N) 2.56(2H,CH ₂) 3.53(2H,CH ₂)		
6	1635vs 1575vs 1480w	1440vs 1440vs 1430s 1405vs	2.28 3Hx2	6.25 6.35 1Hx2	1.07,1.18(6H,(-CH ₂) ₃ N) 2.7(6H, <u>CH</u> ₃ CH ₂) 3.54,3.41(2H, <u>CH₂</u> NH)		
7	1455m 1625vs 1565vs	1442vs 1428vs	2.29 3Hx2	6.20-6.35 1Hx2	2.34-4.06(m,12H,CH ₂ x6)		
8	1525vs 1650s 1632s 1595s	1492s 1450s 1430s	2.33 3Hx2	6.38 1Hx2	7.25-7.71(m,5H,C ₆ H ₅)		
9	1570s 1659vs 1638vs 1610m	1503s 1450s 1410s	2.33 3Hx2	6.31 6.39 1Hx2	7.25-7.65(m,4H,C ₆ H ₄)		
10	1589vs 1660vs 1640vs 1614vs	1532s 1500s 1445vs	2.34 2.37 3Hx2	6.35 6.40 1Hx2	7.23-7.84(m,4H,C ₆ H ₄)		
11	1572s 1655vs 1635vs 1590s	1488s 1445s 1400s	2.34 3Hx2	6.33 6.39 1Hx2	7.30-7.66(m,4H,C ₆ H ₄)		
12	1565s 1630vs 1596s	1500s 1470s 1450vs	2.28 6H	6.36 1Hx2	2.28(CH ₃ x2) 7.10-7.40(3H,C ₆ H ₃)		
13	1548vs 1640vs 1620vs 1575vs	1525m 1460vs	2.25 2.28 6H	6.37 1Hx2	2.33(CH ₃ x2) 7.17(3H,C ₆ H ₃)		
14	1634vs 1614m 1545m 1525vs	1490m 1460m 1420vs	2.34 3Hx2	6.35 6.41 1Hx2	2.56(s,3H,CH ₃) 7.26,7.80,8.40(3H,C ₆ H ₃)		
15	1650vs 1618s 1584vs	1558s 1510vs 1455vs	2.34 3Hx2	6.35 6.42 1Hx2	2.52(\$,3H,CH ₃) 7.54,7.57,8.55(3H,C ₆ H ₃)		
16	1630m 1591vs 1537s	1481m 1462s 1451m	2.38 s,3Hx3	6.34 1Hx3			
17	1521m 1662vs 1565s	1420vs 1525s 1440s	2.16 2.29 3Hx2	6.20 6.42 1Hx2	3.12(t,2H,CH ₂) 3.83(t,2H,CH ₂) 7.0-8.0(m,5H,aromatic H		
18	1635vs 1598s 1560m	1488vs 1432s 1402s	2.32 3Hx2	6.39 1Hx2	2.36(s,3H,CH ₃) 3.12(s,3H,CH ₂) 7.26-7.45(m,5H,C ₆ H ₅)		

a) vs; very strong: s; strong: m; medium: w; weak. b) Chemical shifts are given in δ -values(ppm) downfield from tetramethylsilane (TMS) as an internal standard. s; singlet: d; doublet: t; triplet: q; quartet: m; multiplet.

Table 🔅	3	•
---------	---	---

,

13_{C-NMR DATA}a)

Comp	od. 4-CH3	Thiazole 2-C	Moiety 4-C	5-C	N- <u>C</u> (=N)NH	Other signals
1	16.54(q)	167.13	144.82	105.22(d)	152.12	27.97(q,CH ₃)
2	16.47(q)	167.23	144.55	105.09(d)	151.47	15.16(q,CH ₃) 35.80(t,CH ₂)
3	16.42(q)	166.12	144.62	104.85(d)	155.54	38.57(q,CH ₃)
4	16.15(q)	166.03	143.46	103.76(d)	156.16	13.21(q,CH ₃) 42.40(t,CH ₂)
5	16.67(q)	166.70	145.37	105.32(d)	151.25	39.73(t,CH ₂) 44.80(q,CH ₃) 58.79(t,CH ₂)
6	16.82(q)	166.62	145.83	103.41(d)	151.05	11.47(q,CH ₃) 39.46(t,CH ₂) 46.77(t,CH ₂) 53.22(t,CH ₂)
7	16.70(q)	166.79	145.17	105.44(d)	151.17	38.68(t,CH ₂) 53.33(t,CH ₂) 58.04(t,CH ₂) 66.05(t,CH ₂)
8	15.72(q)	168.36	141.73	104.94(d)	151.36	121.59, 122.99, 128.71, 139.26 (C ₆ H ₅)
9	15.69(q)	168.40	141.65	104.96(d)	151.52	115.21, 123.55, 135.58, 144.62, 156.73, 160.28 (C ₆ H ₄ F)
11	15.54(q)	168.49	141.30	105.04(d)	151.52	122.82, 126.73, 128.51, 138.36 (C ₆ H ₄ Cl)
12	15.81(q)	168.09	142.08	104.96(d)	151.25	18.54(q,CH ₃) 19.37(q,CH ₃) 119.71, 123.38, 129.75, 131.32, 136.50 (C ₆ H ₃)
14	15.60(q)	168.53	141.41	105.24(d)	151.43	18.43(q,CH ₃) 116.13, 125.62, 132.64, 138.51, 149.50 (C ₆ H ₃)
15	15.60(q)	169.24	141.42	105.24(d)	151.56	13.56(q,CH ₃) 118.40, 123.46, 126.51, 127.83, 141.72 (C ₆ H ₃)
16	15.89(q)	165.45	143.63	106.55(d)	149.50	127.00, 141.72 (06.13)
17	16.43(q)	167.16	144.64	104.96(d)	151.43	25.39(t,CH ₂) 41.74(t,CH ₂) 111.36, 111.48, 118.30, 120.94, 123.00, 127.28, 136.62 (aromatic C)
18	16.63(q)	165	145.52(Ъ)	106.41(d)	149.27	10.35(q,CH ₃) 35.57(q,CH ₃) 124.73, 127.09, 129.09, 134.65, 148.88 (C ₆ H ₅) 160.83(C=0)

a) The nmr spectra were measured in dimethylsulfoxide-d₆ at 80° C. Chemical shifts are given in δ -values(ppm) downfield from tetramethylsilane (TMS) as an internal standard. d; doublet: t; triplet: q; quartet: b; broad.

1

Compd.	Main fragment peaks m/z (rel.int; %)
3	281(68,M ⁺), 248(40), 237(24,M ⁺ -(CH ₃) ₂ N), 168(100,M ⁺ -113), 153(53), 140(33), 114(23)
4	309(68,M ⁺), 276(19), 237(33,M ⁺ -(C ₂ H ₅) ₂ N), 196(69,M ⁺ -113), 168(34), 140(100), 114(46)
5	324(16,M ⁺), 266(31,M ⁺ -(CH ₃) ₂ NCH ₂), 254(97), 253(97), 237(100,M ⁺ -(CH ₃) ₂ NCH ₂ CH ₂ NH), 140(92), 114(52)
6	352(3,M ⁺), 266(16,M ⁺ -(C_2H_5) ₂ NCH ₂), 254(24), 253(22), 237(100,M ⁺ -(C_2H_5) ₂ NCH ₂ CH ₂ NH), 140(12), 114(7), 99(94,(C_2H_5) ₂ NCH ₂ CH), 86(100,(C_2H_5) ₂ NCH ₂)
7	366(7,M ⁺), 267(47), 266(27,M ⁺ -(C ₄ H ₈ NO)CH ₂), 254(86), 253(86,M ⁺ -113), 237(M ⁺ -(C ₄ H ₈ NO)CH ₂ CH ₂ NH), 140(53), 114(49), 113(75)
8	329(71,M ⁺), 237(19,M ⁺ -C ₆ H ₅ NH), 217(37), 216(100,M ⁺ -113), 215(35), 189(19), 140(4), 139(14), 114(32)
9	347(37,M ⁺), 237(11,M ⁺ -C ₆ H ₄ FNH), 234(100,M ⁺ -113), 207(7), 173(5), 162(3), 140(2), 114(32)
10	397(37,M ⁺), 280(100,M ⁺ -113), 257(8), 237(8,M ⁺ -CF ₃ C ₆ H ₄ NH), 212(4), 145(6), 140(3), 114(20)
11	363(34,M ⁺), 252(36), 250(100,M ⁺ -113), 237(13,M ⁺ -ClC ₆ H ₄ NH), 223(5), 188(7), 140(3), 114(17)
12	357(35,M ⁺), 244(100,M ⁺ -113), 237(8,M ⁺ -(CH ₃) ₂ C ₆ H ₃ NH), 217(3), 178(5) 140(2), 121(11), 114(5)
13	357(29,M ⁺), 244(100,M ⁺ -113), 237(5,M ⁺ -(CH ₃) ₂ C ₆ H ₃ NH), 217(3), 140(3), 114(12)
14	388(30,M ⁺), 275(100,M ⁺ -113), 245(11), 237(14,M ⁺ -(CH ₃)(NO ₂)C ₆ H ₃ NH), 149(28), 140(6), 114(40)
15	388(35,M ⁺), 275(100,M ⁺ -113), 237(11,M ⁺ -(CH ₃)(NO ₂)C ₆ H ₃ NH), 229(13), 149(12), 140(6), 114(48)
16	350(58,M ⁺), 317(14), 237(100,M ⁺ -113), 140(14), 114(37)
17	396(32,M ⁺), 282(8), 254(92), 237(100,M ⁺ -(C ₈ H ₆ N)CH ₂ CH ₂ NH), 149(52), 143(57), 140(50), 130(32), 115(48), 114(37)
18	439(79,,M ⁺), 326(64,M ⁺ -113), 320(33), 319(32), 237(100,M ⁺ -(C ₁₁ H ₁₁ N ₂ 0)NH), 203(18), 141(81), 140(58), 114(43)

REFERENCES

- 1. R.Yoda, K.Akiyama, Y.Yamamoto, and Y.Murakami, Bunseki Kagaku, 1981, 30, 160.
- 2. R.Yoda, Mikrochim. Acta [Wien], 1982 II, 271.
- 3. R.Yoda, Y.Yamamoto, and Y.Murakami, Mikrochim. Acta [Wien], 1983 II, 75.
- 4. R.Yoda, Y.Yamamoto, and Y.Matsushima, Chem. Pharm. Bull., 1984, 32, 2224.
- 5. R.Yoda, Y.Yamamoto, T.Okada, Y.Matsushima, and Y.Iitaka, <u>Chem. Pharm. Bull.</u>, 1984, 32, 3483.
- Y.Yamamoto, R.Yoda, T.Okada, and Y.Matsushima, <u>Annual Rep. Kyoritsu Coll.</u> Pharm., 1984, <u>29</u>, 11.
- 7. R.Yoda, Y.Yamamoto, and Y.Matsushima, Chem. Pharm. Bull., 1985, 33, 225.
- R.Yoda, Y.Yamamoto, Y.Matsushima, T.Fujie and Y.Iitaka, <u>Chem. Pharm. Bull.</u>, 1985, <u>33</u>, 4943.
- 9. R.Yoda, Y.Yamamoto, T.Okada, and Y.Matsushima, Heterocycles, 1985, 23, 2339

10.V.M.Ledovskikh and Yu.P.Shapovalova, <u>Ukr. Khim. Zh.</u>, 1980, <u>46</u>, 1301 [<u>Chem. Abstr</u>., 1981, <u>94</u>, 208017j].

Received, 26th May, 1987