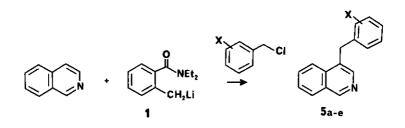

AN ALTERNATIVE PROCEDURE FOR THE PREPARATION OF 4-BENZYLISOQUINOLINES FROM ISOQUINOLINE¹

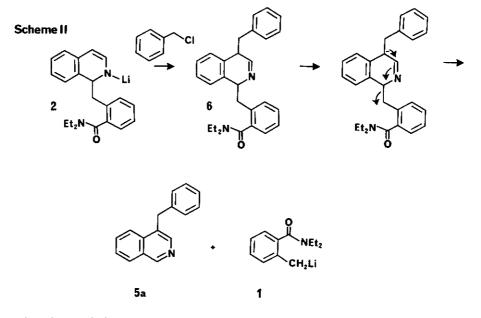
Robin D. Clark Institute of Organic Chemistry, Syntex Research, Palo Alto, California 94304, U.S.A.

<u>Abstract</u> - Addition of lithiated N,N-diethyl-o-toluamide to isoquinoline gave an adduct which was treated with benzyl chlorides to afford 4-benzylisoquinolines in yields of 60-78%.


Isoquinoline has been converted to 4-benzylisoquinoline by heating with benzyl alcohol and potassium hydroxide.^{2,3} While investigating the addition of lithiated W,W-diethyl-o-toluamide (1) to isoquinoline, we found an alternative procedure for the introduction of benzyl and substituted benzyl groups into the 4-position of isoquinoline which proceeds under considerably milder conditions than the original procedure.

We have previously demonstrated that addition of lithic species 1 to 3,4-dihydroisoquinolines directly afforded fused tetracyclic products with the berbane skeleton.⁴ However, addition of 1 to isoquinoline proceeded smoothly at -70°C to afford an adduct (2) which did not ring close upon warming to room temperature. Workup afforded the unstable 1,2-dihydroisoquinoline 3^5 which was reduced with sodium borohydride in ethanol to give $4^{6.7}$ in 84% overall yield (Scheme I).

Treatment of the presumed lithic species 2 with benzyl chloride at -70 °C followed by warming to room temperature gave 4-benzylisoquinoline (5a) as the major basic product in 78% yield. *N.N*-diethyl-o-toluamide was recovered in greater than 75% yield as the major neutral product. Application to other substituted benzyl chlorides gave products 5b-e in yields of 60-73% (Table).


Table: 4-Benzylisoquinolines from Isoquinoline

π	Product ⁶	Yield (%) ^a	mp (°C)	mp, HCl Salt (°C) ^b
н	5a	78	116-117 ^C	210-212
3-0CH3	5ь	60	oil	185-186
4-0CH3	5c	68	76-77	207-208
2-CH3	5d	65	oil	235-236
4-t-Butyl	5e	73	135-136	238-240

- a) Compounds 5a and 5e were purified by medium pressure chromatography (silica gel, ethyl acetate/hexane). Compounds 5b-d were purified by silica gel chromatography (4% methanol/ dichloromethane).
- b) Crystallized from ethanol/ether.
- c) Lit. mp 119-120°C (reference 2).

The formation of the observed products can be rationalized by benzylation of lithio species 2 in the 4-position to give an adduct 6 which eliminates anion 1 under the basic reaction conditions (Scheme II). The anion 1 so regenerated can serve to (catalytically) deprotonate 6 to continue the cycle.

The relative instability of presumed adduct 6, as opposed to the stable adduct 2, cannot presently be explained. Other electrophiles (e.g. methyl iodide, n-butyl iodide) appear to add to 2 in the 4-position but give product mixtures which do not contain 4-substituted isoquinolines (¹H nmr analyses). Further investigation will be required to clarify these points. However, it is clear that this procedure represents a preparatively useful synthesis of 4-benzylisoquinolines which proceeds under milder conditions than the classical benzyl alcohol-potassium hydroxide method.²

A typical experimental procedure is as follows. 4-Benzylisoquinoline (5a). *n*-BuLi (6.25 ml of 1.6 M in hexane, 10 mmol) was added to a -70°C solution of diisopropylamine (1.7 ml, 12 mmol) in 35 ml of THF. A solution of *N*,*N*-diethyl-*o*-toluamide (1.91 g, 10 mmol) in 3 ml of THF was added to give a deep purple solution of anion 1. A solution of isoquinoline (1.4 g, 11 mmol) in 3 ml of THF was added dropwise to give a faint pink solution which was then treated with benzyl chloride (1.26 g, 10 mmol) and allowed to warm to room temperature. The mixture was poured into 5% aqueous HCl and washed with ether. Evaporation of the dried (Na_2SO_4) ether extract gave 1.7 g of an oil which by tlc (50% ethyl acetate-hexane) and ¹H nmr analyses was mostly recovered *N,N*-diethyl-o-toluamide. The aqueous acidic layer was basified with NH₄OH and extracted with ethyl acetate to afford a crystalline residue which by tlc analysis (50% ethyl acetate-hexane) was mostly 5a with a small amount of isoquinoline. Medium pressure silica gel chromatography (30% ethyl acetate-hexane) afforded 1.7 g (78%) of 4-benzylisoquinoline, mp 117-118°C (11t.² 119-120°C). ¹H nmr (CDCl₃) 9.08 (s, 1 H, H-1), 8.32 (s, 1 H, H-3), 7.86 (dd, 1 H, J = 7.5, 1 Hz, H-8), 7.82 (dd, 1 H, J = 7.8, 1 Hz, H-5), 7.54 (m, 1 H, H-6), 7.46 (m, 1 H, H-7), 7.10 (m, 5 H), 4.30 (s, 2 H). Anal. Calcd for C₁₆H₁₃N: C, B7.64; H, 5.97; N, 6.39. Found: C, B7.57; H, 5.87; N, 6.26.

ACKNOWLEDGEMENT

We thank Dr. Jahangir and Dr. J. Muchowski for valuable discussions during the course of this work. Preparation of the manuscript by Mary Kavanagh is gratefully acknowledged.

REFERENCES AND NOTES

- 1. Contribution no. 747 from the Institute of Organic Chemistry.
- 2. M. Avramoff and Y. Sprinzak, J. Amer. Chem. Soc., 1956, 78, 4090.
- 3. For other syntheses of 4-benzylisoquinolines see the following references: from ß-benzylphenylethylamine, J. von Braun, O. Bayer, and L. Cassel, Ber., 1927, 60, 2602; from 1,2,3,4-tetrahydroisoquinoline and benzaldehyde, W.D. Burrows and E.P. Burrows, J. Org. Chem., 1963, 28, 1180; from 1,2-dihydroisoquinolines and benzaldehyde, J.M. Bobbitt, D.P. Winter, and J.M. Kiely, J. Org. Chem., 1965, 30, 2459.
- 4. R.D. Clark, Heterocycles, 1985, 23, 825.
- 5. The ¹H nmr spectrum was in accord with this structure. The compound rapidly decomposed upon standing at room temperature.
- Satisfactory elemental analyses and ¹H nmr spectra consistent with the assigned structures were obtained for all new compounds.
- 7. Compound 4: oil; HCl salt, mp 206-207°C (EtOH-Et_O).

Received, 6th July, 1987