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Abstract—— Reduction of tetraazapentalene derivatives with
sodium borohydride (NaBH,) afforded the ring-opening compound,
1,3-bis(substituted thiocarbamoyl)perhydropyrimidine, in good

gIV

yields by the reduction-elimination of the C= moiety.

We have recently reported the preparation cof symmetrical tetraazapentalene de-
rivatives (la-¢) by a convenient one-pot reaction using lithium thio-

ureide/phenacyl chloride/alkyl isothiocyanate system,l

the first example of the
X-ray crystallographic structure? of a new heteropentalene, 3,4-diethyl-1,6-
propano-1H,6H-3a-thia(s!V)-1,3,4,6-tetraazapentalene-2,5(3H,4H)-dithione (1b), and
the smooth conversion of the symmetrical tetraazapentalene derivatives to the
unsymmetrical tetraazapentalene derivatives (ld-g) via selective elimination,

folleowed by 1,3-dipolar cycloadditionﬁ

4

However, the reaction behavior of 1 has
not been well investigated to date. In our continuing study on the reacticn
behavior of tetraazapentalene derivatives, it was found that la-g reacts with
reducing agents to give the ring-opening c¢ompound, 1,3-bis(substituted thio-

carbamoyl)perhydropyrimidine, by the reduction-elimination of the c=stV

moiety.

In this communication, we wish to report the regioselective reduction cof
symmetrical and unsymmetrical tetraazapentalene derivatives la-g with NaBH,.
3,4-Dimethyl-l,64propano—lH,6H-3a-thia(SIV)-1,3,4,G—tetraazapentalene-z,s(3H,4H)-
dithione (la) reacted with NaBH, in 2-propanol to give 1,3-bis(methyl thio-
carbamoyl)perhydropyrimidine (2a) in good yields.5 The evolution of hydrogen

sulfide in this reaction was recognized. The yields and melting points of the

reduction products 2a-g are shown in Table 1.
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Table 1. Reduction of Tetraazapentalene Derivatives with NaBH4*

rl R? solvent Product Mp/°C vield/s*"
CH4 CHy 2-Propanot 2a 187-188 70 (24)***
CH4 CH; Diglyme 2a 187-188 70
C3Hg CyHg 2~Propanol 2b 184-186 54
CH,=CHCH, CH,=CHCH, 2-Propanol 2c 76-71 50
CH2=CHCH2 CH,=CHCH, Diglyme 2c 70-71 54
CH,y CoHg 2-Prapanol 24 161162 84
CHy Cglig 2-Propancl 2e 146—-147 51
CHjy CHy=CHCH, 2-Propanol 2f 86-87 63
CoHg CHy=CHCH, 2-Propanol 29 61-63 73

* The reactions were carried out in 2-propancl at room temperature
for 3 h.
** Isolated yield.
*** The reacticn of la with LiAlH, was carried out in ether at

room temperature for 3 h.

The typical procedure for the reduction of tetraazapentalene derivatives with
NaBHy is as follows: To a solution of la (260 mg, 1.0 mmol) in 2-propanol (30 ml)
was added 10 times molar quantity of NaBH,;, and the reaction mixture was sfirred
at room temperature for 3 h. After 2-propancl was evaporated, the residue was
poured into water, and the mixture was extracted several times with chloroforﬁ.
The chloroform layer was washed with water, dried over Na,;SO,, and condensed under
reduced pressure. Then the products were chromatographed on a preparative TLC

(silica gel, dichloromethane:sethyl acetate = 4:1 as an eluent) to give Z2a.
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Compound 2a was recrystallized from ethanol to give colorless solid (162 mg, 70%,
mp 187-188 °C). This compound is stable under the atmosphere. All reduction

products were characterized by spectroscopic data®

and elemental analyses.

The reduction of la with sodium borodeuteride (NaBD,} was performed in the same

manner as with NaBH, to give the deute-
S

rated product (3a) in 70% yield. The /JL\ ;KQ /JL\

structure of 3a was determined by the CH;—HN N N NH-CH,

comparisons of spectral properties with L\\//J

those of 2a. 1In the 14 nmr spectrum of 3a

2a, the peak of the methylene protons at 2-position was observed at 5.6 ppm as a

singlet, which disappeared in the 1y nme spectrum of 3a. The mass spectrum of 3a

showed m/2z 234 as a parent ion. These results indicate

CH,

v

CH,
that regioselective attack of hydride ion took place at \\jq
the carbon of 6a-position in la. Accordingly, the

8

electronic structure of la is reasonably considered to

be the reverse ylide one as shown in Figure 1.7

Further studies are in progress on the reactivity of

tetraazapentalene derivatives. Figure 1
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of q, 2H, J=5.0 and 7.0Hz, CH,CH3), 3.95 (t, 4H, J=6.0Hz, NCH,CH,CH,N), 4.20
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The microanalyses (C, H, and N) were in satisfactory agreement with the

calculated value (within * 0.3%).

7. Verf recently, the bond-structure relationship ‘ !N;_&ﬂ
of 6a~thia(s!V)pentalene analogs has been S‘__—'E;-———-S
explained as shown in Figure 2. K. BAkiba, +
Kagaku, 42, 539 (1987). W
Figure 2
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