REDUCTION OF 3,4-DISUBSTITUTED 1,6-PROPANO-1H,6H-3a-THIA(S^{IV})-1,3,4,6-TETRAAZAPENTALENE-2,5(3H,4H)-DITHIONE WITH SODIUM BOROHYDRIDE

Noboru Matsumura,^{*} Masaaki Tomura, Osamu Mori, Masataka Ukawa, and Shigeo Yoneda^{*} Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 591, Japan

<u>Abstract</u> — Reduction of tetraazapentalene derivatives with sodium borohydride (NaBH₄) afforded the ring-opening compound, 1,3-bis(substituted thiocarbamoyl)perhydropyrimidine, in good yields by the reduction-elimination of the C=S^{IV} moiety.

We have recently reported the preparation of symmetrical tetraazapentalene derivatives (la-c) by a convenient one-pot reaction using lithium thioureide/phenacyl chloride/alkyl isothiocyanate system,¹ the first example of the X-ray crystallographic structure² of a new heteropentalene, 3,4-diethyl-1,6propano-1H,6H-3a-thia(S^{IV})-1,3,4,6-tetraazapentalene-2,5(3H,4H)-dithione (1b), and the smooth conversion of the symmetrical tetraazapentalene derivatives to the unsymmetrical tetraazapentalene derivatives $(\underline{1d}-\underline{g})$ via selective elimination, followed by 1,3-dipolar cycloaddition.³ However, the reaction behavior of 1 has not been well investigated to date.⁴ In our continuing study on the reaction behavior of tetraazapentalene derivatives, it was found that 1a-g reacts with reducing agents to give the ring-opening compound, 1,3-bis(substituted thiocarbamoyl)perhydropyrimidine, by the reduction-elimination of the C=S^{IV} moiety. In this communication, we wish to report the regioselective reduction of symmetrical and unsymmetrical tetraazapentalene derivatives 1a-g with NaBH₄. 3,4-Dimethyl-1,6-propano-1H,6H-3a-thia(S^{IV})-1,3,4,6-tetraazapentalene-2,5(3H,4H)dithione (1a) reacted with NaBH, in 2-propanol to give 1,3-bis(methyl thiocarbamoyl)perhydropyrimidine (2a) in good yields.⁵ The evolution of hydrogen sulfide in this reaction was recognized. The yields and melting points of the reduction products 2a-g are shown in Table 1.

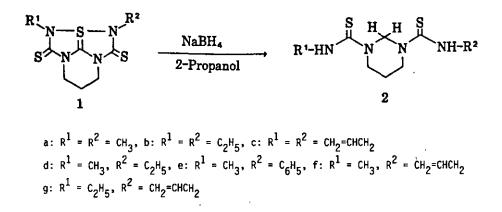


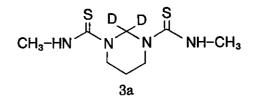
Table 1. Reduction of Tetraazapentalene Derivatives with NaBH4

R ¹	R ²	Solvent	Product	Mp/°C	Yield/%**
СН3	Снз	2-Propanol	<u>2a</u>	187-188	70 (24)***
СНЗ	СН _З	Diglyme	<u>2a</u>	187-188	70
с ₂ н ₅	C ₂ H ₅	2-Propanol	<u>2b</u>	184-186	54
CH2≖CHCH2	CH2=CHCH2	2-Propanol	<u>2c</u>	70-71	50
сн ₂ =снсн ₂	CH2=CHCH2	Diglyme	<u>2c</u>	70-71	54
сн ₃	C2H5	2-Propanol	<u>2d</u>	161-162	84
CH3	^C 6 ^H 5	2-Propanol	<u>2e</u>	146-147	51
CH ₃	CH2=CHCH2	2-Propanol	<u>2f</u>	86-87	63
с ₂ н ₅	CH2=CHCH2	2-Propanol	<u>2g</u>	61-63	73

The reactions were carried out in 2-propanol at room temperature for 3 h.

Isolated yield.

l


The reaction of <u>la</u> with $LiAlH_4$ was carried out in ether at room temperature for 3 h.

The typical procedure for the reduction of tetraazapentalene derivatives with NaBH₄ is as follows: To a solution of $\underline{1a}$ (260 mg, 1.0 mmol) in 2-propanol (30 ml) was added 10 times molar quantity of $NaBH_4$, and the reaction mixture was stirred at room temperature for 3 h. After 2-propanol was evaporated, the residue was poured into water, and the mixture was extracted several times with chloroform. The chloroform layer was washed with water, dried over Na_2SO_4 , and condensed under reduced pressure. Then the products were chromatographed on a preparative TLC (silica gel, dichloromethane:ethyl acetate = 4:1 as an eluent) to give 2a.

Compound 2a was recrystallized from ethanol to give colorless solid (162 mg, 70%, mp 187-188 °C). This compound is stable under the atmosphere. All reduction products were characterized by spectroscopic data⁶ and elemental analyses.

The reduction of 1a with sodium borodeuteride $(NaBD_4)$ was performed in the same

manner as with $NaBH_A$ to give the deuterated product (<u>3a</u>) in 70% yield. The structure of $\underline{3a}$ was determined by the comparisons of spectral properties with those of 2a. In the ¹H nmr spectrum of

2a, the peak of the methylene protons at 2-position was observed at 5.6 ppm as a singlet, which disappeared in the 1 H nmr spectrum of 3a. showed m/z 234 as a parent ion. These results indicate that regioselective attack of hydride ion took place at the carbon of 6a-position in <u>la</u>. Accordingly, the electronic structure of <u>la</u> is reasonably considered to be the reverse ylide one as shown in Figure 1.7 Further studies are in progress on the reactivity of tetraazapentalene derivatives.

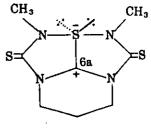


Figure 1

REFERENCES AND NOTES

- 1, N. Matsumura, M. Tomura, R. Mando, Y. Tsuchiya, and S. Yoneda, Bull. Chem. Soc. Jpn., 59, 3693 (1986); N. Matsumura, M. Tomura, Y. Tsuchiya, S. Yoneda, and M. Nakamura, Chem. Express, 1, 487 (1986).
- 2, N. Matsumura, M. Tomura, S. Yoneda, and K. Toriumi, Chem. Lett., 1986, 1047.
- 3, N. Matsumura, M. Tomura, O. Mori, and S. Yoneda, Chem. Lett., 1987, 1065.
- 4, R. J. S. Beer and A. Naylor, Tetrahedron Lett., 1973, 2989; R. J. S. Beer, N. H. Holmes, and A. Naylor, J. Chem. Soc., Perkin Trans. I, 1979, 2909; R. J. S. Beer, H. Singh, D. Wright, and L. K. Hansen, Tetrahedron, 37, 2485 (1981).
- 5, Lithium aluminum hydride reacted with <u>la</u> in ether to give <u>2a</u> in poor yield as one of many components (see Table 1). The reducing systems such as $NaBH_4$ -AlCl₃, NaBH₄-MgBr₂, and LiAlH₄-AlCl₃, were examined for the reduction of <u>la</u>, but these systems were not good for the formation of 2a.
- 6, <u>2a</u>: ¹H Nmr(CDCl₃) δ = 1.80 (m, 2H, NCH₂CH₂CH₂N), 3.15 (d, 6H, J=5.0Hz, 2xCH₃), 4.00 (t, 4H, J=7.0Hz, NCH₂CH₂CH₂N), 5.60 (s, 2H, NCH₂N), and 7.00 (br, 2H, 2xNH; ¹³C nmr(CDCl₃) δ = 24.46, 32.64, 47.92, 62.38, and 182.43; ms m/z 232

(M⁺); 2b: ¹H Nmr(CDCl₃) δ = 1.25 (t, 6H, J=7.0Hz, 2xCH₂CH₃), 1.75 (m, 2H, NCH₂CH₂CH₂N), 3.65 (d of q, 4H, J=4.0 and 7.0Hz, 2xCH₂CH₃), 3.95 (t, 4H, J=5.0Hz, NCH₂CH₂CH₂N), 5.55 (s, 2H, NCH₂N), and 6.85 (br, 2H, 2xNH); ms m/z 260 (M^+) ; 2c: ¹H Nmr(CDCl₃) $\delta \approx$ 1.80 (m, 2H, NCH₂CH₂CH₂N), 4.00 (t, 4H, J=6.0Hz, NCH₂CH₂CH₂CH₂N), 4.27 (m, 4H, 2xNCH₂CH=CH₂), 5.16-5.28 (m, 4H, 2xNCH₂CH=CH₂), 5.62 (s, 2H, NCH₂N), 5.86-6.00 (m, 2H, 2x NCH₂CH=CH₂), and 7.18 (br, 2H, 2xNH); ¹³C nmr(CDCl₃) § = 24.50, 48.03, 48.64, 62.51, 117.28, 133.28, and 181.43; ms m/z 284 (M⁺); 2d: ¹H Nmr(CDCl₃) δ = 1.27 (t, 3H, J=7.3Hz, NHCH₂CH₃), 1.80 (m, 2H, NCH₂CH₂CH₂N), 3.14 (d, 3H, J=4.3Hz, NHCH₃), 3.66 (d of q, 2H, J=4.9 and 7.4Hz, NHCH₂CH₃), 3.98 (m, 4H, NCH₂CH₂CH₂N), 5.59 (s, 2H, NCH₂N), 6.92 (br, 1H, NH), and 7.10 (br, 1H, NH); ms m/z 246 (M⁺); 2e: ¹H Nmr(DMSO-d₆) $\delta = 1.70$ (m, 2H, NCH₂CH₂CH₂N), 2.90 (s, 3H, CH₃), 3.85 (m, 4H, NCH₂CH₂CH₂N), 5.70 (s, 2H, NCH₂N), 7.20 (s, 5H, aromatic), 7.90 (br, 1H, NH), and 9.75 (br, 1H, NH); ms m/z 159 (M⁺-PhNCS), and 135; <u>2f</u>: ¹H Nmr(CDCl₃) δ = 1.75 (m, 2H, NCH₂CH₂CH₂N), 3.05 (d, 3H, J=6.0Hz, CH₃), 3.95 (t, 4H, J=5.0Hz, NCH₂CH₂CH₂N), 4.20 (m, 2H, NCH₂CH=CH₂), 4.95-5.40 (m, 2H, NCH₂CH=CH₂), 5.55 (s, 2H, NCH₂N), 5.60-6.30 (m, 1H, NCH₂CH=CH₂), and 6.95-7.40 (br, 2H, 2xNH); ms m/z 258 (M⁺); 2g: ¹H Nmr(CDCl₃) δ = 1.35 (t, 3H, J=7.0Hz, CH₂CH₃), 1.80 (m, 2H, NCH₂CH₂CH₂N), 3.60 (d of q, 2H, J=5.0 and 7.0Hz, CH₂CH₃), 3.95 (t, 4H, J=6.0Hz, NCH₂CH₂CH₂N), 4.20 (m, 2H, NCH₂CH=CH₂), 5.00-5.40 (m, 2H, NCH₂CH=CH₂), 5.55 (s, 2H, NCH₂N), 5.60-6.30 (m, 1H, NCH₂CH=CH₂), and 6.80-7.30 (br, 2H, 2xNH); ms m/z 272 (M⁺). The microanalyses (C, H, and N) were in satisfactory agreement with the calculated value (within ± 0.3%).

7, Very recently, the bond-structure relationship of 6a-thia(S^{IV})pentalene analogs has been explained as shown in Figure 2. K. Akiba, Kagaku, 42, 539 (1987).

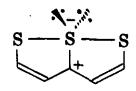


Figure 2

Received, 19th August, 1987