STEREOCHEMISTRY OF DIASTEREOMERIC 9,10-DIMETHOXY-1,3,4,6,7,11b-HEXAHYDROSPIRO[BENZO-[a]QUINOLIZIN-2,5'-IMIDAZOLIDINE]-2',4'-DIONES

J. Carlos Menéndez and Mónica M. Söllhuber^{*} Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain

<u>Abstract</u> — The structures of the two diastereomeric title compounds obtained by the Bucherer-Bergs and Read procedures are respectively assigned to α and β isomers on the basis of ¹H-nmr, ¹³C-nmr and chemical reactivity data. Both compounds present a predominant *trans* conformation as shown by ir, ¹H-nmr and ¹³C-nmr data.

The interesting biological activities shown by many 2-substituted benzo[a]quinolizidines¹⁻⁵ induced us to study the 2-spiro derivatives of the mentioned ring system. The preparation of 2-spirohydantoins can be achieved by application of Bucherer-Bergs⁶ and Read⁷ procedures to 9,10-dimethoxybenzo[a]quinolizidin-2-one, yielding two possible diastereomeric spiro compounds (α and β). Since some benzo[a]quinolizidines present stereospecificity in their pharmacological action^{1,2}, we considered of interest the elucidation of the stereochemistry of these diastereomers. Mechanistic studies carried out by Edward and Jitransgri⁸ show that the Bucherer-Bergs reaction of substituted cyclohexanones yields as main product the α isomer with the 4'-carbonyl function of the spirohydantoin ring in the less sterically hindered position, while the Read reaction yields as the major product the β isomer with this carbonyl group in the sterically more hindered position. Assuming the same orientation to take place in the case of 9,10-dimethoxybenzo[a]quinolizidin-2-one and the system to adopt a *trans* conformation, the structures of both diastereomers would be the following :

The present work shows the applicability of Edward and Jitransgri's rule⁸ by determining the configurations of the isomeric spirohydantoins obtained from 9,10-dimethoxybenzo[a]quinolizidin-2one⁹; the preparation of these hydantoins will be reported elsewhere together with some of their pharmacological properties.

It is well known that the benzo[a]quinolizidine nucleus may exist as an equilibrium mixture of one B/C *trans* quinolizidine (I) and two B/C *cis* quinolizidine systems (II and III) (Scheme 1). Although the configuration of the nitrogen atom in structure I is opposite to that in II and III, the three systems are usually considered as conformers.

Scheme 1

The different conformers of benzo[a]quinolizidine have already been well characterized by a variety of $ir^{10,13}$, 1 H-nmr 11 and 13 C-nmr $^{12-15}$ methods. The appearance of Bohlmann bands at ca. 2750 cm⁻¹ (assigned to $v \ C_{\alpha}$ -H of C₄ and C_{11b}) and at ca. 2800 cm⁻¹ (assigned to $v \ C_{\alpha}$ -H of C₆) is indicative of a *trans* quinolizidine conformation¹³. Consequently, the observed values (Table 1) suggest a main contribution of *trans* conformer for both 2-spirohydantoin isomers A and B.

Spectral band	Compound A	Compound B	
Ir (KBr) Bohlmann bands	2755 (m), 2795 (w)	2755 (m), 2800 (w)	
¹ H-nmr (d ₅ -pyridine)			
N _{3'} -H	12.45 (broad s)	12.35 (broad s)	
N ₁ ,-H	9.96 (s)	9.38 (s)	
Ar-H	6.91, 6.71 (2 s)	6.96, 6.67 (2 s)	
с ₁₁₆ -н	3.75 (m)	4.41 (broad d, J=10 Hz)	
С _{4 ах} -н		3.37 (m)	
OMe	3.77, 3.71 (2 s)	3.71, 3.69 (2 s)	

Table 1 : Main features of ir and 200 MHz ¹H-nmr spectra of compounds A and B

 13 C-nmr can be considered as the most reliable spectroscopic tool for conformational studies of benzo[a]quinolizidine systems. Table 2 shows the assignments made for the 13 C-nmr spectra of compounds A and B. The techniques used for the assignment are : multiplicity of signals by proton coupling, long-range couplings and literature results.

The partial delocalization of the nitrogen lone pair electrons into the antiparallel C-H bond affects the coupling constant¹⁶. As a result, the ¹J (¹³C-H) for a *cis* conformation of the proton and the nitrogen lone pair is 6-12 Hz larger than that for the *trans* orientation. Van Binst and Tourwé reported¹² a coupling constant in the range of 126-133 Hz for several *trans* benzo[a]qui-nolizidines while the *cis* conformers have coupling constants of 139-143 Hz. C_{11b} shows ¹J (¹³C-H) values of 130 and 131 Hz for compounds A and B, respectively, which clearly points to a *trans* conformation for both compounds¹⁷.

This conclusion is confirmed by the chemical shifts for C_6 and C_7 . The observed values for C_6 (52.60 and 51.98 ppm) and C_7 (29.85 and 29.89 ppm) in compounds A and B respectively are in the range of 50.8-53.4 ppm and 28.6-30.2 ppm reported¹⁵ for several *trans* benzo[a]quinolizidines, while C_6 is shifted to $\delta < 46$ ppm in the *cis* II conformation and C_7 to $\delta < 26$ ppm in the *cis* III conformation.

Table 2

 $^{13}\text{C-nmr}$ Spectra of Compounds A and B^{a}

Position ^b	Compound A (Bucherer)		Compound B (Read)	
	δ	¹ J(¹³ С-Н)	δ	¹ J(¹³ C-H)
°7	29.85 (t)	128	29.89 (t)	128
с _з	33.73 (t)	129	34.39 (t)	130
c ₁	39.87 (t)	131	40.44 (t)	130
с ₄ *	52.26 (t)	с	51.98 (t)	131
с ₆ *	52.60 (t)	¢	51.98 (t)	131
c ₁₂ +	56.18 (q)	144	56.04 (q)	143
c ₁₃ †	56.56 (q)	144	56.43 (q)	144
с _{11Ь}	58.89 (d)	130	57.99 (d)	131
¢ ₂ (¢ ₅ ,)	63.80 (s)	-	60.95 (s)	-
с ₈	113.12 (d)	153	113.01 (d)	147
c ₁₁	110.03 (d)	153	110.02 (d)	153
C _{11a}	130.01 (s)	-	130.36 (s)	-
C _{7a}	128.05 (s)	-	127.66 (s)	-
c ₉ ⁵	148.58 (s)	-	148.49 (s)	-
۲ ₁₀	148.96 (s)	-	148.71 (s)	-
с ₂ ,	158.67 (s) ^d	-	157.92 (s) ^e	-
c ₄ ,	179.29 (s) ^f	-	179.95 (s) ^g	-

^aChemical shifts in ppm downfield TMS; J values in Hz.

 $^{\rm b} {\rm Carbon}$ signals marked in the table with *,† or $^{\rm g}$ could not be assigned with certainty.

^CPoor resolution in spin-coupled spectrum.

d_{Half-width} of peak without spin-decoupling 6 Hz.

^eHalf-width of peak without spin-decoupling 7.5 Hz.

^fHalf-width of peak without spin-decoupling 11 Hz.

⁹Half-width of peak without spin-decoupling 18.5 Hz.

Once established the conformation of the benzo[a]quinolizidine ring system, the configuration of the spiranic carbon atom remains to be considered. The α and β spirohydantoin isomers must differ in the localization of the 4' carbon atom. In the α isomer, the 4' carbon is *gauche* with respect to all hydrogen atoms at C₁ and C₃, while in the β isomer it is *anti* with respect to two of them. Iherefore the vicinal coupling constant ${}^{3}J({}^{13}C-H)$ must be greater and the ${}^{13}C$ peak broader in the β isomer than in the α isomer 18 .

The half-widths of signals for C_4 , atoms in the proton-coupled spectra of A and B are shown in Table 2. From these data it may be concluded that the compound A has the α configuration while compound B should be identified with the β isomer. This outcome is in concordance with the Edward-Jitransgri rule.

In order to provide further confirmation for the results outlined above, compounds A and B were treated with acetic anhydride. While B was diacetylated to B' after a 9 h reflux, A was only monoacetylated (to A') even when the raection time was prolonged to 17 h. In the α isomer, N₁, is placed in a much more hindered position than in the β isomer; therefore, the results of the acetylation experiments confirm the assignation of the α structure to A and the β to B.

The ascription of the β structure to compound B allows an easy interpretation of the anomalous shift of C_{11b} proton in the ¹H-nmr spectrum, which can be attributed to the deshielding effect of C₄, carbonyl group of the hydantoin ring. The δ value of 4.4 ppm (Table 1) is displaced about 0.8 ppm downfield in the B isomer from the expected value for a *trans* conformer¹¹. The difference in chemical shift between β and α compounds is similar to the deshielding reportedly induced by the hydantoin C_4 ,=0 group on β protons in compounds structurally related to $B^{19,20}$. This line of reasoning permits an independent assignment of structure β to compound B.

EXPERIMENTAL

Melting points are uncorrected and were obtained on a Büchi apparatus. Spectral data were recorded on the following spectrometers : ir—Perkin Elmer 577; ¹H-nmr—Hitachi-Perkin Elmer R-24 (60 MHz) (compounds A' and B') and Brucker WM-200-SY (200.16 MHz) (compounds A and B); ¹³C-nmr—Brucker WM-200-SY (50.32 MHz). All chemical shifts are referred to TMS. All coupling constants are given in Hz and correspond to the first order analysis of the spectra.

<u>3'-Acetyl-9,10-dimethoxy-1,3,4,6,7,11b-hexahydrospiro[benzo[a]quinolizin-2,5'-imidizolidine]-2',4'-</u> <u>dione</u>. A mixture of <u>A</u> (100 mg) and acetic anhydride (5 ml) was refluxed for 17 h in an oil bath at 150°C. The solvent was evaporated under reduced pressure and the residue crystallized from MeOH and charcoal, yielding 20 mg (18 %) of A'. Mp 244-246°C (MeOH). IR (KBr) cm⁻¹ : 3400 (N-H), 1740, 1680, 1650 (C=0). ¹H-nmr (d₆-DMSO) δ : 6.60 (s, 2H, Ar-H) , 4.50 (broad m, 1H, 11b-H) , 3.70 (s, 6H, 2 OMe) , 2.50 (s, 3H, COCH₃) , 3.20-1.40 (m, 10H). Anal. Calcd. for C₁₉H₂₃N₃O₅ : N, 11.26 ; C, 61.13 ; H, 6.17. Found : N, 11.01 ; C, 59.95 ; H, 6.03.

1',3'-Diacety1-9,10-dimethoxy-1,3,4,6,7,11b-hexahydrospiro[benzo[a]quinolizin-2,5'-imidazolidine]-

<u>2',4'-dione</u>. A mixture of <u>B</u> (100 mg) and acetic anhydride (5 ml) was refluxed for 9 h in an oil bath at 150°C. The solvent was evaporated under reduced pressure and the residue was crystallized from EtOH, yielding 70 mg (57 %) of B'. Mp 216-218°C (EtOH). Ir (KBr) cm⁻¹ : 1790, 1740, 1675, 1640 (C=O). ¹H-nmr (d₆-DMSO) δ : 6.70 (s, 1H, Ar-H), 6.65 (s, 1H, Ar-H) , 3.80 (m, 1H, 11b-H) , 3.70 (s, 6H, 2 OMe) , 2.55 (s, 3H, COCH₃) , 2.40 (s, 3H, COCH₃) , 3.30-1.50 (m, 10H). Anal. Calcd. for C₂₁H₂₅N₃O₆ : N, 10.12 ; C, 60.72 ; H, 6.02. Found : N, 9.92 ; C, 60.51 ; H, 5.92.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. M. Martínez Moreno of this Department for elemental analyses and Plan Nacional de Formación de Personal Investigador for a research grant to JCM. REFERENCES AND NOTES

- 1. J. W. Van Dyke, H. J. Havera, and R. D. Johnson, J. Med. Chem., 1972, 15, 91.
- J. M. Caroon, R. D. Clark, A. F. Kluge, C. H. Lee, and A. M. Strosberg, <u>J. Med. Chem.</u>, 1983, <u>26</u>, 1426.
- 3. J. L. Archibald, R. Beardsley, T. J. Ward, and J. F. White, J. Med. Chem., 1983, 26, 416.
- 4. F. D. Popp and R. F. Watts, J. Pharm. Sci., 1978, 67, 871.
- 5. P. M. Paciorek, V. Pierce, N. B. Shepperson, and J. F. Waterfall, <u>Brit. J. Pharmacol.</u>, 1984, 82, 127.

- 6. H. T. Bucherer and V. A. Lieb, J. Prakt. Chem., 1934, 141, 871.
- 7. W. T. Read, J. Am. Chem. Soc., 1922, 44, 1746.
- 8. J. T. Edward and C. Jitransgri, Can. J. Chem., 1975, 53, 3339.
- 9. N. Whittaker, J. Chem. Soc. (C), 1969, 85.
- 10. F. Bohlmann, Chem. Ber., 1958, 91, 2157.
- M. Uskoković, H. Bruderer, C. Von Planta, T. Williams, and A. Brossi, <u>J. Am. Chem. Soc.</u>, 1964, <u>86</u>, 3364.
- 12. G. Van Binst and D. Tourwé, Heterocycles, 1973, 1, 257.
- 13. M. Sugiura, N. Takao, K. Iwasa, and Y. Sasaki, Chem. Pharm. Bull., 1978, 26, 1901.
- 14. M. Sugiura, N. Takao, K. Iwasa, and Y. Sasaki, Chem. Pharm. Bull., 1978, 26, 1168.
- 15. M. Sugiura, N. Takao, K. Iwasa, and Y. Sasaki, Chem. Pharm. Bull., 1979, 27, 3144.
- 16. W. B. Jennings, D. R. Boyd, C. G. Watson, E. D. Becker, R. B. Bradley, and D. M. Jerina, <u>J. Am.</u> <u>Chem. Soc.</u>, 1972, <u>94</u>, 8501.
- 17. Although direct measurements of ${}^{1}J$ (${}^{13}C-H$) coupling constants are somewhat inaccurate because of instrumental error and line broadening due to long-range coupling and overlapped signals, a difference of 6-12 Hz can be considered significant.
- G. G. Trigo, C. Avendaño, E. Santos, J. T. Edward, and S. C. Wong, <u>Can. J. Chem.</u>, 1979, <u>57</u>, 1456.
- 19. G. G. Trigo, E. Gálvez, and C. Avendaño, J. Heterocycl. Chem., 1978, 15, 907.
- 20. G. G. Trigo, E. Gálvez, M. Espada, and C. Bernal, J. Heterocycl. Chem., 1979, 16, 977.

Received, 27th July, 1987