POLYCYCLIC <u>M</u>-HETERO COMPOUNDS. XXX. SYNTHESIS AND ANTIDEPRESSIVE EVALUATION OF 3-SUBSTITUTED 3,4,5,6-TETRAHYDROBENZO[<u>h</u>]QUINAZOLIN-4-ONES

Takashi Hirota[‡], Kenji Sasaki, Hiroshi Yamamoto, and Takashi Katsu

Faculty of Pharmaceutical Sciences, Okayama University Tsushima, Okayama 700, Japan

<u>Abstract</u> ~ Synthesis of 3-substituted 3,4,5,6-tetrahydrobenzo[<u>h</u>]quinazolin-4-ones is described. Antidepressive evaluation of these compounds was performed by antireserpine action and compounds IX and X exhibited the positive action.

In the previous papers concerning the structure-activity relationship between antidepressive activity and azasteroidal analogs, we have reported that 3,4,6,7tetrahydro-5H-benzo[6,7]cyclohepta[1,2-d]pyrimidin-4-one (I)¹ and 3,4,5,6-tetrahydrobenzo[h]quinazoline-4-thione (II)² exhibit the antireserpine action in mice. Furthermore, some 4-substituted 5,6-dihydrobenzo[h]quinazolines (III)³ and 4-substituted 6,7-dihydro-5H-pyrimido[5,4-d]benzazepine (IV)^{4,5} also showed the same action. Compounds I and II usually exist as lactam- and thiolactamforms. These results prompted us to synthesize 3-substituted analogs of 5,6dihydrobenzo[h]quinazoline and to examine the antidepressive activity. As shown in Scheme 1, reaction of 3,4,5,6-tetrahydrobenzo[h]quinazolin-4-one⁶ (V) with methyl (or ethyl) bromoacetate in the presence of triethylamine afforded 3-substituted esters (VIa,b). Ir spectra of VI showed two carbonyl

I

II

III

IV: X = H or Cl

Scheme 1

bands attributable to lactam (1638 cm⁻¹ in VIa and 1630 cm⁻¹ in VIb) and ester (1744 cm⁻¹ in VIa and 1730 cm⁻¹ in VIb) (Table I). Furthermore, nmr spectra of these esters in CDCl₃ indicated pyrimidine protons at δ 8.05 ppm (VIa) and δ 8.08 ppm (VIb), individually, which also supported the lactam-form excluding the possibility of ether-form (VI'). Usually, pyrimidine proton of type III in

Compd.	Formule	Analysis (%); Calcd. (Found)			Ms (m/z)	Ir ^{a)}
	····	C	H	N	м+	(cm ⁻¹)
VIa	^C 15 ^H 14 ^N 2 ^O 3	66.65	5.22	10.36	270	1744, 1638,
	-	(66.72	5.18	10.26)		1659(sh)
VID	C ₁₆ H ₁₆ N ₂ O ₃	67.59	5.67	9.85	284	1730, 1630,
		(67.32	5.62	9.75)		1660(sh)
VIIa	C ₁₅ H ₁₅ N ₃ O ₂	66.90	5.61	15.60	269	3300, 1654
		(66.76	5.56	15.51)		
VIIb	C18H19N3O3	66.44	5.88	12.91	325	1648,
	10 10 0 0	(66.53	5.83	13.08)		1680(sh)
VIII	C ₁₄ H ₁₂ N ₂ O ₃	65.61	4.71	10.93	256	3000-2400
	14 10 0 0	(65.38	4.66	10.74)		1710, 1648
IX	C14H13N302	65.87	5.13	16.46	255	3410, 3285,
	14 10 0 2	(65.94	5.10	16.40)		1678, 1648
X	C14H11N30	70.87	4.67	17.71	237	1640,
		(70.92	4.55	17.50)		1660(sh)
XI	C14H14N2O2	69.40	5.82	11.56	242	3220, 1660
	11 11 6 2	(69.55	5.83	11.52)		
XII	C ₁₄ H ₁₃ BrN ₂ O	55.10	4.29	9.17	304 ^{b)}	1646
		(55.19	4.24	9.16)		
XIIIa	^с 16 ^н 19 ^N 30	71.34	7.11	15.60	269	1650
		(71.23	7.15	15.56)		
XIIIb	C ₁₈ H ₂₁ N ₃ O ₂ ·HC1	62.15	6.37	12.08	311 ^{c)}	1650
		(61.89	6.45	12.17)		
XIIIC	C20H26N402	67.77	7.39	15.80	354	3330, 1643
	00 00 . 2	(67.91	7.48	15.79)		
XV	C14H14N202	69.40	5.82	11.56	242	3350
	17 17 0 2	(69.53	5.82	11.60)		
XVII	ClaH ₁₃ ClN ₂ O	64.49	5.02	10.74	260 ^{d)}	1655
	17 IJ 4	(64.59	5.01	10.71)		
		•		-		

Table I Blemental Analyses and Ms and Ir Spectral Data of Products

a) Absorption bands due to N-H, 0-H, and/or C=0; measured in KBr disk except for XIIIa (CHCl₃). b) Intensity ratio; m/z 304 : m/z 306 = 1 : 1. c) M⁺ - HCl. d) Intensity ratio; m/z 260 : m/z 262 = 3 : 1.

Chemical shifts, & (J in Hz)						
Compd.a)	Side chain proton	Ring proton				
	-	2-н ^{ь)}	5,6-н		7,8,9-H ^{c)}	10-H ^{c)}
VIa	3.82(3H, s, OMe), 4.68(2H, s, CH ₂)	8.05	2.91(br	9)	7.31	8.15
٧Ib	1.32 and 4.28(3H and 2H, t and q,	8,08	2.92(br	s)	7.30	8.14
	J = 7, OEt), 4.67(2H, s, CH ₂)					
VIIa	2.65(3H, d, J = 5, changed to	8,36	2.78(m)		7.34	8.09
	singlet after addition of D ₂ O,					
	N-Me), 4.58(2H, s, CH ₂), 8.15(1H,					
	br, exchangeable with D_2O , NH)					
VIIb	3.70(8H, br s, morpholine-H),	8.12	2.90(br	s)	7.29	8.17
	4.75(2H, s, NCH ₂ CO)					
VIII	4.77(2H, s, CH ₂)	8.32	2.85(m)		7.34	8.11
IX	4.59(2H, s, CH ₂), 7.25 and 7.72	8.37	2.79(m)		7.33	8.06
	(each lH, each br, exchangeable					
	with D ₂ O, NH ₂)					
X	4.85(2H, s, CH ₂)	8.20	2.92(br	s)	7.33	8.15
XI	3.66(2H, q, J = 5.5, changed to	8.35	2.82(m)		7.34	8.10
	triplet after addition of D ₂ O,					
	OCH_2 , 4.00(2H, t, J = 5.5, NCH_2)					
XII	3.76 and 4.33(each 2H, each t,	8,12	2.91(br	s)	7.32	8.11
	$J = 6$, CH_2CH_2Br)					
XIIIa	2.29(6H, s, 2 x Me), 2.63 and 4.01	8.10	2.88(br	s)	7.26	8.07
	(each 2H, each t, $J = 6$, CH_0CH_0N)					
XIIIb ^{d)}	3.40 and 3.52(4H and 2H, each m,	8.56	2.83(m)	•	7.37	8.06
	N(CH ₂) ₂), 3.92(4H, m, CH ₂ OCH ₂),					
	$4.40(2H, t, J = 7, C=NCH_2)$					
XIIIc	2.45(6H, m, N(CH ₂) ₂), 2.76 and	8.16	2.91(br	s)	7.32	8.13
	3.08(each 2H, each t, J = 6,					
	С <u>Н</u> аNHCH ₂), 3.67(4H, m, CH ₂ OCH ₂),					
	$4.05(2H, t, J = 6, NCH_{9}CH_{9}NH)$				•	
XV	4.05 (2H, m, changed to triplet	8.72	2.95(br	s)	7.35	8.28
	after addition of D_20 , $J = 5$,					
	$CH_{0}OH$), 4.63(2H, t, J = 5,					
	C <u>H</u> ₂ CH ₂ OH)					
XVII	3.95 and 4.26 (each 2H, each t.	8.15	2.91(br	s)	7.32	8.16
	J = 5, NCH ₂ CH ₂ Cl)		, -	,		
	· 2···2···					

Table II Nmr Spectral Data of Products

a) Measured in $CDCl_3$ except for VIIa, IX, XI and XIIIb (DMSO-d_6) and VIII (MeOH-d_4). b) All signals were singlet. c) All signals were multiplet. d) Measured as HCl salt.

.

CDCl₃ appears around δ 8.60 ppm³ and indeed, that of compound XV appears at δ 8.72 ppm (Table II). Aminolysis of VIa with methylamine or morpholine afforded the corresponding amide (VIIa,b). Hydrolysis of VIb with sodium hydroxide gave carboxylic acid (VIII).

Reaction of V with chloroacetonitrile in the presence of sodium hydroxide in diluted 2-methoxyethanol gave 3-substituted amide (IX), which was dehydrated with phosphoryl chloride to obtain nitrile (X). The nmr spectra of IX and X showed pyrimidine protons at & 8.37 ppm (IX, in DMSO-d₆) and & 8.20 ppm (X) similar to those of esters (VI). While nmr and ms spectra and elemental analysis of X supported the structure in Scheme 1, apparent C=N band was not observed in ir spectrum. Why C=N absorption can not be detected is not understandable at present. However, the existence of the nitrile group was settled by the following experiments; 1) the nitrile (X) was also synthesized by treating V with bromoacetonitrile in the presence of triethylamine; 2) formation of IX was confirmed on TLC by the hydrolysis of X with sodium hydroxide (1.2 equiv.) in 2-methoxyethanol-water (4 : 1, v/v).

Next, compound V was allowed to react with 2-bromoethanol to yield hydroxyethyl derivative (XI). Treatment of XI with phosphorus tribromide gave bromoethyl derivative (XII). Instrumental data of XI and XII also indicated that they existed as lactam-form. Aminolysis of XII with dimethylamine, morpholine, or morpholinoethylamine afforded the corresponding aminoethyl derivatives

	Body temperature (°C) mean value ± SD						
Compd.	Before	Time after administration					
	administration	30 min	1 h	2 h	4 h		
saline	23.8 ± 0.4	25.4 ± 1.0	26.0 ± 1,2	27.0 ± 1.5	29.7 ± 2.4		
imipramine	23.9 ± 1.1	$28.1 \pm 1.6^*$	$31.5 \pm 1.9^{**}$	$33.7 \pm 1.3^{**}$	$33.2 \pm 0.5^*$		
IX	24.2 ± 0.7	27.0 ± 1.2	$29.1 \pm 1.1^{**}$	30.4 <u>+</u> 1.7 [*]	32.3 ± 1.9		
X	24.1 ± 0.6	26.0 <u>+</u> 1.2	26.8 <u>+</u> 1.4	29.3 <u>+</u> 0.9 [*]	30.8 <u>+</u> 2.7		

 Table III
 Effects of IX and X on Reserpine-Induced

 Hypothermia in Mice

Five male ICR-JCL mice weighing 20 to 29 g were used in all experiments and test compounds (10 mg/kg, <u>i.p</u>.) were injected at 18 h after reserpine (2 mg/kg, <u>i.p</u>.) was administered to mice. Significantly different from the control (saline) at p<0.05(*) and p<0.01(**).

(XIIIa,b,c).

Finally, reaction of 4-chloro-5,6-dihydrobenzo[<u>h</u>]quinazoline⁶ (XIV) with ethylene glycol afforded hydroxyethoxy derivative (XV), which was considered as a convenient intermediate of 15-oxa-11,13-diazasteroidal skeleton (XVI). However, cyclization of XV with thionyl chloride gave 3-(2-chloroethyl)-3,4,5,6tetrahydrobenzo[<u>h</u>]quinazolin-4-one (XVII). Formation of XVII suggested that ring closure initially occurred and then ring opening resulted. Physical data of these compounds (VI ~ XIII, XV, and XVII) are listed in Tables I, II and IV.

Evaluation of the antidepressive activity of the above 3-substituted compounds was screened by the inhibition against reserpine-induced hypothermia in mice⁷ and compared with that of control (saline). As shown in Table III, compounds IX and X exhibited a antireserpine action; however, these activities were weaker than that of imipramine.

BXPERIMENTAL

Mps were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Blemental analyses were performed on a Yanagimoto MT-2 CHN Corder elemental analyzer. The ir spectra were obtained with a Japan Spectroscopic A-102 diffraction grating infrared spectrophotometer. The nmr spectra were measured on a Hitachi R-22FTS FT-NMR spectrometer (90 MHz). The chemical shifts (δ) in ppm are measured relative to tetramethylsilane as an internal standard. The ms spectra were taken with a Shimadzu LKB-9000 instrument at 70 eV.

General Procedure for Preparation of VIa, VIb, X, and XI

A solution of 3 mM of V, 6 mM of Bt_3N , and 5 mM of halogeno compound dissolved in 30 ml of dry acetone was refluxed for an appropriate period. The precipitated crystals ($\operatorname{Bt}_3N\cdot\operatorname{HBr}$) were filtered off and the filtrate was evaporated to dryness. The residue was washed with H_2O to remove $\operatorname{Bt}_3N\cdot\operatorname{HBr}$ and recrystallized (Table IV).

2-(4-0xo-3,4,5,6-tetrahydrobenzo[h]quinazolin-3-yl)-N-methylacetamide (VIIa)A mixture of 270 mg (1.0 mM) of VIa and 10 ml of 40% methanolic MeNH₂ wasstirred at room temperature for 2 h. After evaporation of the solvent, theresidue was recrystallized from 50% aqueous BtOH to give 245 mg (91%) of VIIa

Compd.	React. time (h)	Appearance (Recryst. solv.)	Мр (°С)	Yield (%)
VIa	27	colorless rhombi	196 - 198	87
		(benzene-cyclohexane)		
VID	34	colorless needles	217 - 219	65
		(benzene-CHCl ₃)		
X	25	colorless needles	214 - 216	84
		(benzene-CHCl ₂)		
X1 ^{a)}	16	colorless prisms (CHCl ₃ -EtOH)	204 - 206	85

Table IV Reaction Times, Appearances, Melting Points, and Yields of VIa, VIb, X, and XI

a) Three millimoles of V and 12 mM of Bt_3N were dissolved in 30 mM of 2-bromoethanol.

as colorless needles, mp 259 - 261 °C (closed capillary).

2-(4-0xo-3,4,5,6-tetrahydrobenzo[h]quinazolin-3-yl)-N, N-(3-oxapentamethylene)-

acetamide (VIIb)

A mixture of 135 mg (0.5 mM) of VIa and 2 ml of morpholine was heated at 70 - 75 °C for 8 h. After evaporation of morpholine <u>in vacuo</u>, the residue was recrystallized from diluted BtOH to give 109 mg (67%) of VIIb as colorless fine needles, mp 216 ~ 217 °C.

2-(4-0xo-3,4,5,6-tetrahydrobenzo[h]quinazolin-3-yl)acetic Acid (VIII)

(Hydrolysis of VIb)

To a solution of 142 mg (0.5 mM) of VIb in 5 ml of EtOH (dissolved at 60 °C and then returned to room temperature), was added 1.2 ml of 0.5 N NgOH (0.6 mM) and the solution was allowed to stand at room temperature for 1 h. After addition of 10 ml of H_20 to the reaction mixture, the solution was acidified with AcOH. The mixture was condensed up to about half volume and extracted with AcOEt after salting-out. The organic layer was washed with a small amount of brine, dried over Na₂SO₄, and evaporated. The residue was recrystallized from acetonitrilebenzene-cyclohexane to give 87 mg (67%) of VIII as colorless rhombi, mp 204 -207 °C.

2-(4-0xo-3,4,5,6-tetrahydrobenzo[h]quinazolin-3-yl)acetamide (IX)

A mixture of 1.98 g (10 mM) of V, 0.40 g (10 mM) of NaOH, and 1.13 g (15 mM) of

chloroacetonitrile in 40 ml of $MeOCH_2CH_2OH-H_2O$ (1 : 1, v/v) was heated at 70 - 75 °C for 3 h. The reaction mixture was allowed to stand overnight and the precipitated crystals were collected on a filter. Subsequently, the same amounts of NaOH and chloroacetonitrile were added to the filtrate, because the starting material V remained in the filtrate (on TLC). The solution was heated at 70 - 75 °C for 4 h. After cooling of the reaction mixture, 10 ml of H₂O was added and the deposited crystals were filtered. The combined crystals were recrystallized from 70% aqueous EtOH to give 1.99 g (78%) of IX as colorless feathers, which sublimed at 260 - 280 °C, mp 291.5 - 293 °C (closed capillary). 2-(4-0xo-3,4,5,6-tetrahydrobenzo[h]quinazolin-3-yl)acetonitrile (X)

(Dehydration of IX)

A mixture of 255 mg (1 mM) of IX, 306 mg (2 mM) of POCl₃, and 0.5 ml of pyridine was heated at 110 - 115 °C for 3 h. After evaporation of the solvent <u>in vacuo</u>, the residue was basified with diluted $NaHCO_3$ and extracted with CH_2Cl_2 . The organic layer was washed with H_2O , dried over Na_2SO_4 , and evaporated. The residue was recrystallized from benzene-cyclohexane to give 147 mg (62%) of X as colorless needles, which was identified with the product obtained by the reaction of V with bromoacetonitrile (Table IV).

3-(2-Bromoethyl)-3,4,5,6-tetrahydrobenzo[h]quinazolin-4-one (XII)

A mixture of 1.98 g (8.2 mM) of XI, 2.65 g (9.8 mM) of PBr₃, 30 ml of dry benzene, and 20 ml of dry dioxane was refluxed for 30 h. To the reaction mixture, was added 500 ml of H₂O, and the mixture was basified with diluted NaHCO₃ and extracted with CHCl₃. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated to dryness. The crystalline residue was recrystallized from diluted EtOH to give 2.26 g (91%) of XII as colorless needles, mp 146 - 147 °C.

3-(2-Dimethylaminoethyl)-3,4,5,6-tetrahydrobenzo[<u>h</u>]quinazolin-4-one (XIIIa)

To a solution of 305 mg (1 mM) of XII dissolved in 4 ml of dioxane-MeOH (3 : 1, v/v), was added 0.5 ml (5.6 mM) of 50 % aqueous Me₂NH. The solution was allowed to stand at room temperature for 2.5 days in a sealed flask. The reaction mixture was evaporated to dryness and a small amount of H₂O was added to the residue. The solution was basified with diluted NaOH and extracted with CHCl₃. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated to give 240 mg (89%) of XIIIa as brownish viscous oil.

3-(2-Morpholinoethyl)-3,4,5,6-tetrahydrobenzo[<u>h</u>]quinezolin-4-one (XIIIb)

-3218-

A solution of 153 mg (0.5 mM) of XII and 218 mg (2.5 mM) of morpholine dissolved in 1 ml of dioxane was heated at 85 - 90 °C for 1 h. The reaction mixture was evaporated to dryness and <u>ca</u>. 20 ml of H_2 O was added to the residue. The mixture was basified with diluted NaOH and extracted with CHCl₃. The organic layer was washed with H_2 O, dried over Na₂SO₄, and evaporated. Since crystallization of the oily residue was unsuccessful, it was converted to HCl salt, which was recrystallized from diluted EtOH to give 125 mg (72%) of XIIIb·HCl as colorless prisms, mp 246 - 249 °C.

<u>3-[2-(2-Morpholinoethylamino)ethyl]-3,4,5,6-tetrahydrobenzo[h]</u>guinazolin-4-one (XIIIc)

A mixture of 305 mg (1 mM) of XII and 780 mg (6 mM) of 4-(2-aminoethyl)morpholine was heated at 95 °C for 2.5 h. To the reaction mixture, was added 10 ml of H_20 and the mixture was extracted with CHCl₃. The organic layer was washed with H_20 , dried over Na_2SO_4 , and evaporated to dryness. The residue was chromatographed on silica gel using AcOEt-MeOH (3 : 2, v/v) as the eluent to give 246 mg (70%) of XIIIc as colorless needles from benzene-<u>n</u>-hexane, mp 93 -94.5 °C.

4-(2-Hydroxyethoxy)-5,6-dihydrobenzo[<u>h</u>]quinazoline (XV)

A mixture of 216 mg (1 mM) of XIV, 5 ml of ethylene glycol, and 1 ml of Et_3N was heated at 75 - 80 °C for 15 h. After excess of Et_3N was evaporated, <u>ca</u>. 30 ml of H₂O was added to the residue and the resulting mixture was extracted with CHCl₃. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated to dryness. The residue was recrystallized from diluted BtOH to give 174 mg (72%) of XV as colorless needles, mp 77 - 78 °C.

3-(2-Chloroethyl)-5,6-dihydrobenzo[h]quinazolin-4-one (XVII)

A solution of 197 mg (0.81 mM) of XV, 0.065 ml (0.89 mM) of $SOCl_2$, and 0.51 ml (1.1 mM) of Bt_3N dissolved in 10 ml of alcohol-free dry $CHCl_3$ was stirred at room temperature for 20 h. After evaporation of the solvent, the residue was recrystallized from diluted BtOH to give 107 mg (51%) of XVII as colorless feathers, mp 149 - 150 °C.

ACKNOWLEDGEMENTS

The authors are grateful to Mr. A. Iwadoh for ms spectral measurements and to Mrs. M. Aiki for microanalyses.

REFERENCES

- 1 T. Hirota, K. Ieno, and K. Sasaki, J. Heterocyclic Chem., 1986, 23, 1685.
- 2 T. Hirota, R. Hamazaki, T. Ohdoi, K. Sasaki, and T. Namba, <u>J. Heterocyclic</u> <u>Chem.</u>, 1987, 24, 341.
- 3 T. Hirota, K. Kawanishi, K. Sasaki, and T. Namba, <u>Chem. Pharm. Bull.</u>, 1986, 34, 3011.
- 4 T. Hirota, M. Fukumoto, and K. Sasaki, <u>Heterocycles</u>, 1986, 24, 1997.
- 5 T. Hirota, M. Fukumoto, and K. Sasaki, <u>Heterocycles</u>, 1986, 24, 3223.
- 6 T. Koyama, H. Hara, T. Hirota, S. Ohmori, and M. Yamato, <u>Chem. Pharm. Bull.</u>, 1975, 23, 2015.
- 7 B. M. Askew, Life Sci., 1963, 2, 725.

Received, 30th July, 1987

£