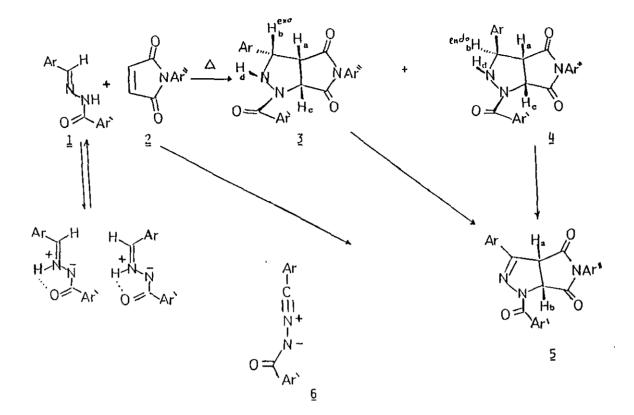
HETEROCYCLES, Vol 27, No. 1, 1988

CYCLOADDITIONS WITH ACYLHYDRAZONES. SELECTIVE DIASTEREOMERIC PYRAZOLIDINE SYNTHESIS AND NITRILE ACYLIMINE SYNTHONS

Mohamed A. Badawy, Said A. El-Bahaie, Azza M. Kadry, and Yehia A. Ibrahim*

Department of Chemistry, Faculty of Science, Cairo University, Giza, A.R. Egypt


<u>Abstract</u>- Arylaldehydes N-acylhydrazones <u>1</u> undergo dipolar cycloadditions to N-arylmaleimides <u>2</u> to give two diastereomeric kinetic and thermodynamic pyrazolidines <u>3</u> and <u>4</u>. Oxidation of <u>3</u> and <u>4</u> gave the corresponding pyrazolines <u>5</u> which were also obtained directly from compounds <u>1</u> and <u>2</u> in nitrobenzene. The present investigation offers an easy access to nitrile acylimine synthons <u>6</u>.

A general principle for the synthesis of five-membered heterocycles has been intro duced with the revolutionary development of the 1,3-dipolar cycloadditions¹. However the reaction depends on the availability of the precursors, especially those needed for the generation of the appropriate 1,3-dipolar species. Thus, although many nitrile imines have been successfully obtained from the appropriate precursors¹, their N-acyl derivatives have not, to the best of our knowledge, been reported. Recent reports showed that arylaldehyde N-phenylhydrazones undergo [3+2] cycloadditions to maleimides and acetylene dicarboxylates².

We have now investigated the reaction of arylaldehyde N-acylhydrazones $\underline{1}$ with N-arylmaleimides 2 as a representative dienophile.

When a mixture of <u>la</u> (<u>1</u>: Ar = Ar' = Ph, 0.1 mmol) and N-phenylmaleimide <u>2a</u> (0.12 mmol) was heated at 170-180°C for 1.5 h, a 60% yield of crystalline compound <u>3a</u> (<u>3</u>: Ar = Ar' = Ar'' = Ph) mp 249°C, could be isolated by first triturating the reaction mixture with chloroform and crystallising the remaining solid from acetic acid. Structure of <u>3a</u> was assigned 3,3a-cis-3a,6a-cis-1-benzoyl-3,5-diphenyl-perhydropyrrolo[3,4-c]pyrazole-4,6-dione on the basis of elemental analysis and its spectral data. Ms (m/z) 397 (12%, M⁺), 396 (45%). Ir (KBr): 3250 (NH), 1720 cm⁻¹ (C=O). 60 MHz ¹H-nmr (DMSO-d₆): Signals for one H each at 5 4.05 (t, Ha), 4.62 (dd, Hb), 6.06 (d, Hc), and 6.8 (d, NH) ppm; Jab=5, Jac=5, Jbd=6Hz. On adding D₂O, the signal at 5 =6.8 ppm disappeared and that at 4.62 changed to a doublet with Jab=5Hz.

When this reaction was carried out for 4 h, another stereoisomeric product 4a, mp 260°C, was obtained in 70% yield. Structure of 4a was assigned 3,3a-trans-3a,6a-cis-1-benzoyl-3,5-diphenylperhydropyrrolo[3,4-c]pyrazole-4,6-dione on the basis of its elemental analysis and its spectral data. Ms (m/z) 397 (41%, M⁺). Ir (KBr) 3250 (NH), 1740 cm⁻¹ (C=O). 90 MHz ¹H-nmr (DMSO-d₆): Signals for one H each at 5 4.22 (d, Ha), 4.90 (s, Hb), 5.95 (d, Hc), and 3.50 (s, NH) ppm; Jab=0, Jac=7Hz.

It is interesting to note that monitoring the reaction of <u>1a</u> with <u>2a</u> by ¹H-NMR spectroscopy showed the predominant formation of 3,3a-cis isomer <u>3a</u> at an early stage of the cycloaddition. After the complete consumption of the both starting materials, <u>3a</u> started to isomerize into the 3,3a-trans isomer <u>4a</u>. The isomerization was completed in 4 h. Compound <u>3a</u> was actually converted into <u>4a</u> when heated at 170°C for 4 h, indicating that compound <u>3a</u> is the kinetic product while <u>4a</u> is the thermodynamic product. When compound <u>3a</u> was heated with excess N-(p-chlorophenyl)maleimide at 170°C for 4 h compound <u>4b</u> (<u>4</u>: Ar = Ar' = Ph, Ar'' = p-ClC₆H₄) was isolated from the reaction mixture, and compound <u>4b</u> was similarly converted into <u>4a</u> by heating with excess <u>2a</u>. This means that the isomerization of the kinetic <u>3a</u> to thermodynamic product <u>4a</u> proceeds through a reterocycloaddition route.

Adducts 3 and 4 have been selectively prepared in the controlled reactions of 1 with 2 in a variety of solvents such as xylene and bromobenzene. Table 1 lists some of the products 3 and 4 obtained from the appropriate 1 and 2.

Product		Аr	Ar	Ar	Ha Ha	Нь	Hc	Hd(NH)	Jab	Jac	Jbđ
3a(i)	249	с ₆ н ₅	с ₆ н ₅	с ₆ н ₅	4.05(t)	4.60(dd)	6.06(d)	6.80(d)	5	5	6
3a(ii)					4,05(t)	4.60(d)	6.06(d)	-	5	5	-
3b(i)	250	с ₆ 11 ₅	с _е н ₅	C ₆ ^{II} 4 ^{C1-p}	4.02(t)	4.60(dd)	6.00(4)	6.70(d)	4	4	5.5
3b(ii)					4.02(t)	4.60(d)	6.00(d)		4	4	-
3c(i)	218	с _б н	с ₆ н ₄ осн ₃ -р	С ₆ Н ₄ С1-р	4.00(t)	4,55(dd)	6.03(d)	6.70(d)	6	6	6 [′]
3c(11)					4.00(t)	4.55(d)	6.03(d)	-	6	6	
4a(i)	260	с ₆ и ₅	с ₆ н ₅	с ₆ н ₅	4.20(d)	4.90(5)	5.95(d)	3.50(s)	0	7	0
4d(i)	255	с ₆ н ₅	с ₆ н ₄ осн ₃ -р	с ₆ н ₅	4.00(d)	4.90(s)	5.97(d)	3.20(s)	0	8	O
4b(i)	236	с ₆ н ₅	C ₆ ‼ ₅	С ₆ Н ₆ С1-р	4.00(d)	4.75(s)	5,80(d)	3.30(s)	0	7	0
4e(1)	258	C_H_C1-m 6_4	с ₆ н ₅	с ₆ ц ₅	4.10(d)	4.95(в)	6.00(d)	3.60(s)	o	7	0
4f(i)	231	C ₆ H ₄ OCH ₃ -p	с ₆ ¹¹ 40СН ₃ -р	с ₆ н ₅	3.95(d)	4.90(5)	5,95(d)	3.70(s)	0	7	0
4c(1)	258	с ₆ н ₅	С ₆ ^{II} 4 ^{0СII} 3 ^{-р}	С ₆ 11 ₆ С1-р	4,08(d)	4.85(s)	5.93(d)	3.40(s)	0	8	0
5a(111)	245	с ₆ н ₅	C ₆ H ₅	с ₆ н ₅	5.10(d)	6.30(d)			10,5		
5b(111)	250	C ₆ H ₄ C1-m	С ₆ н 65	C_II 6 ¹⁵	5,00(d)	6.25(d)			10.5		
	=====					ticzapeca:			5 78 777	L	

The ¹H-nmr was taken in (i) DMSO-d₆; (ii) DMSO-d₆ + D₂O and (iii) CDCl₃ *Satisfactory analysis for all new products $\underline{3}$, $\underline{4}$, and $\underline{5}$ were obtained. Products $\underline{3}$ and $\underline{4}$ were obtained in 50-70% under the same conditions described for <u>3a</u> and <u>4a</u>. Products <u>5a,b</u> were obtained in 90% from <u>3a</u>, <u>4a</u> and <u>4e</u> by heating under reflux 0.5 h in ethanolic cupric chloride and in 30% by heating under reflux 5h in nitrobenzene. Compound <u>5a</u> was also obtained in 85% by heating <u>4a</u> in bromobenzene with equimolecular amount of bromine for 1 h. All products were crystallized from acetic acid.

The products 3 and 4 are readily oxidized to the corresponding pyrazoline derivatives 5 (Table 1) when heated in nitrobenzene or by the action of cupric chloride in ethanol or bromine in bromobenzene. Direct reaction of compounds 1 and 2 in nitrobenzene also leads to 5.

The present investigation gives an easy access to the otherwise unavailable N-acyliminonitrile synthons $\underline{6}$.

Interesting cycloaddition results with different dienophiles and other

functionalized acylhydrazones, ethoxycarbonylhydrazones, thioacylhydrazones, semicarbazones, thiosemicarbazones and their derivatives were obtained and will be reported soon.

REFERENCES AND NOTES

- 1a. R. Huisgen, Angew. Chem. Internat. Ed., 1963, 2, 265, 633.
- b. A. Padwa, ibid., 1976, 15, 123.
- c. W. Oppolzer, ibid., 1977, 16, 10.
- d. R. A. Firestone, <u>Tetrahedron</u>, 1977, <u>33</u>, 3009.
- 2a. M. K. Saxena, M. N. Gudi, and M. V. George, Tetrahedron, 1973, 29, 101.
- b. H. Ogura, K. Kubo, Y. Watanabe, and T. Itoh, <u>Chem. Pharm. Bull.</u>, 1973, <u>21</u>, 2026.
- c. R. Grigg, J. Kemp, and N. Thompson, Tetrahedron Lett., 1978, 31, 2827.
- d. Y. A. Ibrahim, S. E. Abdo, and S. Selim, <u>Heterocycles</u>, 1982, <u>19</u>, 819.
- e. Y. A. Ibrahim, M. A. Badawy, and A. M. Kadry, unpublished work on the reaction of heterocyclic aldehyde hydrazones with dienophiles.

Received, 8th July, 1987